Examples
Here are some side-by-side examples using the official Python scikit-learn
package on the left and the TS sklearn
package on the right.
StandardScaler
Python
import numpy as np
from sklearn.preprocessing import StandardScaler
data = np.array([
[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]
])
s = StandardScaler()
x = s.fit_transform(data)
TypeScript
import * as sklearn from 'sklearn'
const data = [
[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]
]
const py = await sklearn.createPythonBridge()
const s = new sklearn.StandardScaler()
await s.init(py)
const x = await s.fit_transform({ X: data })
KMeans
Python
import numpy as np
from sklearn.cluster import KMeans
data = np.array([
[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]
])
model = KMeans(
n_clusters=2,
random_state=42,
n_init='auto'
)
x = model.fit_predict(data)
TypeScript
import * as sklearn from 'sklearn'
const data = [
[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]
]
const py = await sklearn.createPythonBridge()
const model = new sklearn.KMeans({
n_clusters: 2,
random_state: 42,
n_init: 'auto'
})
await model.init(py)
const x = await model.fit_predict({ X: data })
TSNE
Python
import numpy as np
from sklearn.manifold import TSNE
data = np.array([
[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]
])
model = TSNE(
n_components=2,
perplexity=2,
learning_rate='auto',
init='random'
)
x = model.fit_transform(data)
TypeScript
import * as sklearn from 'sklearn'
const data = [
[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]
]
const py = await sklearn.createPythonBridge()
const model = new sklearn.TSNE({
n_components: 2,
perplexity: 2,
learning_rate: 'auto',
init: 'random'
})
await model.init(py)
const x = await model.fit_transform({ X: data })