DocumentationClassesTweedieRegressor

Class: TweedieRegressor

Generalized Linear Model with a Tweedie distribution.

This estimator can be used to model different GLMs depending on the power parameter, which determines the underlying distribution.

Read more in the User Guide.

Python Reference

Constructors

new TweedieRegressor()

new TweedieRegressor(opts?): TweedieRegressor

Parameters

ParameterTypeDescription
opts?object-
opts.alpha?numberConstant that multiplies the L2 penalty term and determines the regularization strength. alpha \= 0 is equivalent to unpenalized GLMs. In this case, the design matrix X must have full column rank (no collinearities). Values of alpha must be in the range \[0.0, inf).
opts.fit_intercept?booleanSpecifies if a constant (a.k.a. bias or intercept) should be added to the linear predictor (X @ coef + intercept).
opts.link?"auto" | "log" | "identity"The link function of the GLM, i.e. mapping from linear predictor X @ coeff + intercept to prediction y_pred. Option ‘auto’ sets the link depending on the chosen power parameter as follows:
opts.max_iter?numberThe maximal number of iterations for the solver. Values must be in the range \[1, inf).
opts.power?numberThe power determines the underlying target distribution according to the following table:
opts.solver?"lbfgs" | "newton-cholesky"Algorithm to use in the optimization problem:
opts.tol?numberStopping criterion. For the lbfgs solver, the iteration will stop when `max{
opts.verbose?numberFor the lbfgs solver set verbose to any positive number for verbosity. Values must be in the range \[0, inf).
opts.warm_start?booleanIf set to true, reuse the solution of the previous call to fit as initialization for coef_ and intercept_ .

Returns TweedieRegressor

Defined in generated/linear_model/TweedieRegressor.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/linear_model/TweedieRegressor.ts:23
_isInitializedbooleanfalsegenerated/linear_model/TweedieRegressor.ts:22
_pyPythonBridgeundefinedgenerated/linear_model/TweedieRegressor.ts:21
idstringundefinedgenerated/linear_model/TweedieRegressor.ts:18
optsanyundefinedgenerated/linear_model/TweedieRegressor.ts:19

Accessors

coef_

Get Signature

get coef_(): Promise<any[]>

Estimated coefficients for the linear predictor (X @ coef_ + intercept_) in the GLM.

Returns Promise<any[]>

Defined in generated/linear_model/TweedieRegressor.ts:408


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/linear_model/TweedieRegressor.ts:516


intercept_

Get Signature

get intercept_(): Promise<number>

Intercept (a.k.a. bias) added to linear predictor.

Returns Promise<number>

Defined in generated/linear_model/TweedieRegressor.ts:435


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/linear_model/TweedieRegressor.ts:489


n_iter_

Get Signature

get n_iter_(): Promise<number>

Actual number of iterations used in the solver.

Returns Promise<number>

Defined in generated/linear_model/TweedieRegressor.ts:462


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/linear_model/TweedieRegressor.ts:93

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/linear_model/TweedieRegressor.ts:147


fit()

fit(opts): Promise<any>

Fit a Generalized Linear Model.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLikeTraining data.
opts.y?ArrayLikeTarget values.

Returns Promise<any>

Defined in generated/linear_model/TweedieRegressor.ts:164


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/linear_model/TweedieRegressor.ts:210


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/linear_model/TweedieRegressor.ts:106


predict()

predict(opts): Promise<any[]>

Predict using GLM with feature matrix X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeSamples.

Returns Promise<any[]>

Defined in generated/linear_model/TweedieRegressor.ts:246


score()

score(opts): Promise<number>

Compute D^2, the percentage of deviance explained.

D^2 is a generalization of the coefficient of determination R^2. R^2 uses squared error and D^2 uses the deviance of this GLM, see the User Guide.

D^2 is defined as \(D^2 = 1-\frac{D(y_{true},y_{pred})}{D_{null}}\), \(D_{null}\) is the null deviance, i.e. the deviance of a model with intercept alone, which corresponds to \(y_{pred} = \bar{y}\). The mean \(\bar{y}\) is averaged by sample_weight. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLikeTest samples.
opts.y?ArrayLikeTrue values of target.

Returns Promise<number>

Defined in generated/linear_model/TweedieRegressor.ts:284


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/linear_model/TweedieRegressor.ts:332


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/linear_model/TweedieRegressor.ts:372