Class: OneClassSVM

Unsupervised Outlier Detection.

Estimate the support of a high-dimensional distribution.

The implementation is based on libsvm.

Read more in the User Guide.

Python Reference

Constructors

new OneClassSVM()

new OneClassSVM(opts?): OneClassSVM

Parameters

ParameterTypeDescription
opts?object-
opts.cache_size?numberSpecify the size of the kernel cache (in MB).
opts.coef0?numberIndependent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.
opts.degree?numberDegree of the polynomial kernel function (‘poly’). Must be non-negative. Ignored by all other kernels.
opts.gamma?number | "auto" | "scale"Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.
opts.kernel?"sigmoid" | "precomputed" | "linear" | "poly" | "rbf"Specifies the kernel type to be used in the algorithm. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix.
opts.max_iter?numberHard limit on iterations within solver, or -1 for no limit.
opts.nu?numberAn upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.
opts.shrinking?booleanWhether to use the shrinking heuristic. See the User Guide.
opts.tol?numberTolerance for stopping criterion.
opts.verbose?booleanEnable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context.

Returns OneClassSVM

Defined in generated/svm/OneClassSVM.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/svm/OneClassSVM.ts:25
_isInitializedbooleanfalsegenerated/svm/OneClassSVM.ts:24
_pyPythonBridgeundefinedgenerated/svm/OneClassSVM.ts:23
idstringundefinedgenerated/svm/OneClassSVM.ts:20
optsanyundefinedgenerated/svm/OneClassSVM.ts:21

Accessors

dual_coef_

Get Signature

get dual_coef_(): Promise<ArrayLike[]>

Coefficients of the support vectors in the decision function.

Returns Promise<ArrayLike[]>

Defined in generated/svm/OneClassSVM.ts:429


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/svm/OneClassSVM.ts:529


fit_status_

Get Signature

get fit_status_(): Promise<number>

0 if correctly fitted, 1 otherwise (will raise warning)

Returns Promise<number>

Defined in generated/svm/OneClassSVM.ts:454


intercept_

Get Signature

get intercept_(): Promise<ArrayLike>

Constant in the decision function.

Returns Promise<ArrayLike>

Defined in generated/svm/OneClassSVM.ts:479


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/svm/OneClassSVM.ts:504


n_iter_

Get Signature

get n_iter_(): Promise<number>

Number of iterations run by the optimization routine to fit the model.

Returns Promise<number>

Defined in generated/svm/OneClassSVM.ts:554


offset_

Get Signature

get offset_(): Promise<number>

Offset used to define the decision function from the raw scores. We have the relation: decision_function = score_samples - offset_. The offset is the opposite of intercept_ and is provided for consistency with other outlier detection algorithms.

Returns Promise<number>

Defined in generated/svm/OneClassSVM.ts:577


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/svm/OneClassSVM.ts:102


shape_fit_

Get Signature

get shape_fit_(): Promise<any[]>

Array dimensions of training vector X.

Returns Promise<any[]>

Defined in generated/svm/OneClassSVM.ts:600


support_

Get Signature

get support_(): Promise<ArrayLike>

Indices of support vectors.

Returns Promise<ArrayLike>

Defined in generated/svm/OneClassSVM.ts:625


support_vectors_

Get Signature

get support_vectors_(): Promise<ArrayLike[]>

Support vectors.

Returns Promise<ArrayLike[]>

Defined in generated/svm/OneClassSVM.ts:648

Methods

decision_function()

decision_function(opts): Promise<ArrayLike>

Signed distance to the separating hyperplane.

Signed distance is positive for an inlier and negative for an outlier.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The data matrix.

Returns Promise<ArrayLike>

Defined in generated/svm/OneClassSVM.ts:173


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/svm/OneClassSVM.ts:154


fit()

fit(opts): Promise<any>

Detect the soft boundary of the set of samples X.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikePer-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points.
opts.X?ArrayLikeSet of samples, where n_samples is the number of samples and n_features is the number of features.
opts.y?anyNot used, present for API consistency by convention.

Returns Promise<any>

Defined in generated/svm/OneClassSVM.ts:205


fit_predict()

fit_predict(opts): Promise<ArrayLike>

Perform fit on X and returns labels for X.

Returns -1 for outliers and 1 for inliers.

Parameters

ParameterTypeDescription
optsobject-
opts.kwargs?anyArguments to be passed to fit.
opts.X?ArrayLikeThe input samples.
opts.y?anyNot used, present for API consistency by convention.

Returns Promise<ArrayLike>

Defined in generated/svm/OneClassSVM.ts:249


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/svm/OneClassSVM.ts:293


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/svm/OneClassSVM.ts:115


predict()

predict(opts): Promise<ArrayLike>

Perform classification on samples in X.

For a one-class model, +1 or -1 is returned.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeFor kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train).

Returns Promise<ArrayLike>

Defined in generated/svm/OneClassSVM.ts:329


score_samples()

score_samples(opts): Promise<ArrayLike>

Raw scoring function of the samples.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The data matrix.

Returns Promise<ArrayLike>

Defined in generated/svm/OneClassSVM.ts:361


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/svm/OneClassSVM.ts:397