Class: GammaRegressor
Generalized Linear Model with a Gamma distribution.
This regressor uses the ‘log’ link function.
Read more in the User Guide.
Constructors
new GammaRegressor()
new GammaRegressor(
opts?):GammaRegressor
Parameters
| Parameter | Type | Description | 
|---|---|---|
| opts? | object | - | 
| opts.alpha? | number | Constant that multiplies the L2 penalty term and determines the regularization strength. alpha \= 0is equivalent to unpenalized GLMs. In this case, the design matrixXmust have full column rank (no collinearities). Values ofalphamust be in the range\[0.0, inf). | 
| opts.fit_intercept? | boolean | Specifies if a constant (a.k.a. bias or intercept) should be added to the linear predictor X @ coef_ + intercept_. | 
| opts.max_iter? | number | The maximal number of iterations for the solver. Values must be in the range \[1, inf). | 
| opts.solver? | "lbfgs"|"newton-cholesky" | Algorithm to use in the optimization problem: | 
| opts.tol? | number | Stopping criterion. For the lbfgs solver, the iteration will stop when `max{ | 
| opts.verbose? | number | For the lbfgs solver set verbose to any positive number for verbosity. Values must be in the range \[0, inf). | 
| opts.warm_start? | boolean | If set to true, reuse the solution of the previous call tofitas initialization forcoef_andintercept_. | 
Returns GammaRegressor
Defined in generated/linear_model/GammaRegressor.ts:25
Properties
| Property | Type | Default value | Defined in | 
|---|---|---|---|
| _isDisposed | boolean | false | generated/linear_model/GammaRegressor.ts:23 | 
| _isInitialized | boolean | false | generated/linear_model/GammaRegressor.ts:22 | 
| _py | PythonBridge | undefined | generated/linear_model/GammaRegressor.ts:21 | 
| id | string | undefined | generated/linear_model/GammaRegressor.ts:18 | 
| opts | any | undefined | generated/linear_model/GammaRegressor.ts:19 | 
Accessors
coef_
Get Signature
get coef_():
Promise<any[]>
Estimated coefficients for the linear predictor (X @ coef_ + intercept_) in the GLM.
Returns Promise<any[]>
Defined in generated/linear_model/GammaRegressor.ts:380
feature_names_in_
Get Signature
get feature_names_in_():
Promise<ArrayLike>
Names of features seen during fit. Defined only when X has feature names that are all strings.
Returns Promise<ArrayLike>
Defined in generated/linear_model/GammaRegressor.ts:478
intercept_
Get Signature
get intercept_():
Promise<number>
Intercept (a.k.a. bias) added to linear predictor.
Returns Promise<number>
Defined in generated/linear_model/GammaRegressor.ts:403
n_features_in_
Get Signature
get n_features_in_():
Promise<number>
Number of features seen during fit.
Returns Promise<number>
Defined in generated/linear_model/GammaRegressor.ts:428
n_iter_
Get Signature
get n_iter_():
Promise<number>
Actual number of iterations used in the solver.
Returns Promise<number>
Defined in generated/linear_model/GammaRegressor.ts:453
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge):void
Parameters
| Parameter | Type | 
|---|---|
| pythonBridge | PythonBridge | 
Returns void
Defined in generated/linear_model/GammaRegressor.ts:79
Methods
dispose()
dispose():
Promise<void>
Disposes of the underlying Python resources.
Once dispose() is called, the instance is no longer usable.
Returns Promise<void>
Defined in generated/linear_model/GammaRegressor.ts:131
fit()
fit(
opts):Promise<any>
Fit a Generalized Linear Model.
Parameters
| Parameter | Type | Description | 
|---|---|---|
| opts | object | - | 
| opts.sample_weight? | ArrayLike | Sample weights. | 
| opts.X? | ArrayLike | Training data. | 
| opts.y? | ArrayLike | Target values. | 
Returns Promise<any>
Defined in generated/linear_model/GammaRegressor.ts:148
get_metadata_routing()
get_metadata_routing(
opts):Promise<any>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
| Parameter | Type | Description | 
|---|---|---|
| opts | object | - | 
| opts.routing? | any | A MetadataRequestencapsulating routing information. | 
Returns Promise<any>
Defined in generated/linear_model/GammaRegressor.ts:192
init()
init(
py):Promise<void>
Initializes the underlying Python resources.
This instance is not usable until the Promise returned by init() resolves.
Parameters
| Parameter | Type | 
|---|---|
| py | PythonBridge | 
Returns Promise<void>
Defined in generated/linear_model/GammaRegressor.ts:92
predict()
predict(
opts):Promise<any[]>
Predict using GLM with feature matrix X.
Parameters
| Parameter | Type | Description | 
|---|---|---|
| opts | object | - | 
| opts.X? | ArrayLike | Samples. | 
Returns Promise<any[]>
Defined in generated/linear_model/GammaRegressor.ts:226
score()
score(
opts):Promise<number>
Compute D^2, the percentage of deviance explained.
D^2 is a generalization of the coefficient of determination R^2. R^2 uses squared error and D^2 uses the deviance of this GLM, see the User Guide.
D^2 is defined as \(D^2 = 1-\frac{D(y_{true},y_{pred})}{D_{null}}\), \(D_{null}\) is the null deviance, i.e. the deviance of a model with intercept alone, which corresponds to \(y_{pred} = \bar{y}\). The mean \(\bar{y}\) is averaged by sample_weight. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
Parameters
| Parameter | Type | Description | 
|---|---|---|
| opts | object | - | 
| opts.sample_weight? | ArrayLike | Sample weights. | 
| opts.X? | ArrayLike | Test samples. | 
| opts.y? | ArrayLike | True values of target. | 
Returns Promise<number>
Defined in generated/linear_model/GammaRegressor.ts:262
set_fit_request()
set_fit_request(
opts):Promise<any>
Request metadata passed to the fit method.
Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
| Parameter | Type | Description | 
|---|---|---|
| opts | object | - | 
| opts.sample_weight? | string|boolean | Metadata routing for sample_weightparameter infit. | 
Returns Promise<any>
Defined in generated/linear_model/GammaRegressor.ts:308
set_score_request()
set_score_request(
opts):Promise<any>
Request metadata passed to the score method.
Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
| Parameter | Type | Description | 
|---|---|---|
| opts | object | - | 
| opts.sample_weight? | string|boolean | Metadata routing for sample_weightparameter inscore. | 
Returns Promise<any>
Defined in generated/linear_model/GammaRegressor.ts:346