Class: GammaRegressor
Generalized Linear Model with a Gamma distribution.
This regressor uses the ‘log’ link function.
Read more in the User Guide.
Constructors
new GammaRegressor()
new GammaRegressor(
opts
?):GammaRegressor
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.alpha ? | number | Constant that multiplies the L2 penalty term and determines the regularization strength. alpha \= 0 is equivalent to unpenalized GLMs. In this case, the design matrix X must have full column rank (no collinearities). Values of alpha must be in the range \[0.0, inf) . |
opts.fit_intercept ? | boolean | Specifies if a constant (a.k.a. bias or intercept) should be added to the linear predictor X @ coef_ + intercept_ . |
opts.max_iter ? | number | The maximal number of iterations for the solver. Values must be in the range \[1, inf) . |
opts.solver ? | "lbfgs" | "newton-cholesky" | Algorithm to use in the optimization problem: |
opts.tol ? | number | Stopping criterion. For the lbfgs solver, the iteration will stop when `max{ |
opts.verbose ? | number | For the lbfgs solver set verbose to any positive number for verbosity. Values must be in the range \[0, inf) . |
opts.warm_start ? | boolean | If set to true , reuse the solution of the previous call to fit as initialization for coef_ and intercept_ . |
Returns GammaRegressor
Defined in generated/linear_model/GammaRegressor.ts:25
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/linear_model/GammaRegressor.ts:23 |
_isInitialized | boolean | false | generated/linear_model/GammaRegressor.ts:22 |
_py | PythonBridge | undefined | generated/linear_model/GammaRegressor.ts:21 |
id | string | undefined | generated/linear_model/GammaRegressor.ts:18 |
opts | any | undefined | generated/linear_model/GammaRegressor.ts:19 |
Accessors
coef_
Get Signature
get coef_():
Promise
<any
[]>
Estimated coefficients for the linear predictor (X @ coef_ + intercept_
) in the GLM.
Returns Promise
<any
[]>
Defined in generated/linear_model/GammaRegressor.ts:380
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/linear_model/GammaRegressor.ts:478
intercept_
Get Signature
get intercept_():
Promise
<number
>
Intercept (a.k.a. bias) added to linear predictor.
Returns Promise
<number
>
Defined in generated/linear_model/GammaRegressor.ts:403
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/linear_model/GammaRegressor.ts:428
n_iter_
Get Signature
get n_iter_():
Promise
<number
>
Actual number of iterations used in the solver.
Returns Promise
<number
>
Defined in generated/linear_model/GammaRegressor.ts:453
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/linear_model/GammaRegressor.ts:79
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/linear_model/GammaRegressor.ts:131
fit()
fit(
opts
):Promise
<any
>
Fit a Generalized Linear Model.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike | Training data. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<any
>
Defined in generated/linear_model/GammaRegressor.ts:148
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/linear_model/GammaRegressor.ts:192
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/linear_model/GammaRegressor.ts:92
predict()
predict(
opts
):Promise
<any
[]>
Predict using GLM with feature matrix X.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Samples. |
Returns Promise
<any
[]>
Defined in generated/linear_model/GammaRegressor.ts:226
score()
score(
opts
):Promise
<number
>
Compute D^2, the percentage of deviance explained.
D^2 is a generalization of the coefficient of determination R^2. R^2 uses squared error and D^2 uses the deviance of this GLM, see the User Guide.
D^2 is defined as \(D^2 = 1-\frac{D(y_{true},y_{pred})}{D_{null}}\), \(D_{null}\) is the null deviance, i.e. the deviance of a model with intercept alone, which corresponds to \(y_{pred} = \bar{y}\). The mean \(\bar{y}\) is averaged by sample_weight. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike | Test samples. |
opts.y ? | ArrayLike | True values of target. |
Returns Promise
<number
>
Defined in generated/linear_model/GammaRegressor.ts:262
set_fit_request()
set_fit_request(
opts
):Promise
<any
>
Request metadata passed to the fit
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in fit . |
Returns Promise
<any
>
Defined in generated/linear_model/GammaRegressor.ts:308
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/linear_model/GammaRegressor.ts:346