Class: AdaBoostRegressor
An AdaBoost regressor.
An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.
This class implements the algorithm known as AdaBoost.R2 [2].
Read more in the User Guide.
Constructors
new AdaBoostRegressor()
new AdaBoostRegressor(
opts
?):AdaBoostRegressor
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.estimator ? | any | The base estimator from which the boosted ensemble is built. If undefined , then the base estimator is DecisionTreeRegressor initialized with max_depth=3 . |
opts.learning_rate ? | number | Weight applied to each regressor at each boosting iteration. A higher learning rate increases the contribution of each regressor. There is a trade-off between the learning_rate and n_estimators parameters. Values must be in the range (0.0, inf) . |
opts.loss ? | "linear" | "square" | "exponential" | The loss function to use when updating the weights after each boosting iteration. |
opts.n_estimators ? | number | The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. Values must be in the range \[1, inf) . |
opts.random_state ? | number | Controls the random seed given at each estimator at each boosting iteration. Thus, it is only used when estimator exposes a random_state . In addition, it controls the bootstrap of the weights used to train the estimator at each boosting iteration. Pass an int for reproducible output across multiple function calls. See Glossary. |
Returns AdaBoostRegressor
Defined in generated/ensemble/AdaBoostRegressor.ts:27
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/ensemble/AdaBoostRegressor.ts:25 |
_isInitialized | boolean | false | generated/ensemble/AdaBoostRegressor.ts:24 |
_py | PythonBridge | undefined | generated/ensemble/AdaBoostRegressor.ts:23 |
id | string | undefined | generated/ensemble/AdaBoostRegressor.ts:20 |
opts | any | undefined | generated/ensemble/AdaBoostRegressor.ts:21 |
Accessors
estimator_
Get Signature
get estimator_():
Promise
<any
>
The base estimator from which the ensemble is grown.
Returns Promise
<any
>
Defined in generated/ensemble/AdaBoostRegressor.ts:460
estimator_errors_
Get Signature
get estimator_errors_():
Promise
<any
>
Regression error for each estimator in the boosted ensemble.
Returns Promise
<any
>
Defined in generated/ensemble/AdaBoostRegressor.ts:541
estimator_weights_
Get Signature
get estimator_weights_():
Promise
<any
>
Weights for each estimator in the boosted ensemble.
Returns Promise
<any
>
Defined in generated/ensemble/AdaBoostRegressor.ts:514
estimators_
Get Signature
get estimators_():
Promise
<any
>
The collection of fitted sub-estimators.
Returns Promise
<any
>
Defined in generated/ensemble/AdaBoostRegressor.ts:487
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/ensemble/AdaBoostRegressor.ts:595
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/ensemble/AdaBoostRegressor.ts:568
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/ensemble/AdaBoostRegressor.ts:63
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/ensemble/AdaBoostRegressor.ts:117
fit()
fit(
opts
):Promise
<any
>
Build a boosted classifier/regressor from the training set (X, y).
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. If undefined , the sample weights are initialized to 1 / n_samples. |
opts.X ? | ArrayLike | The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. |
opts.y ? | ArrayLike | The target values. |
Returns Promise
<any
>
Defined in generated/ensemble/AdaBoostRegressor.ts:134
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Raise NotImplementedError
.
This estimator does not support metadata routing yet.
Parameters
Parameter | Type |
---|---|
opts | object |
Returns Promise
<any
>
Defined in generated/ensemble/AdaBoostRegressor.ts:180
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/ensemble/AdaBoostRegressor.ts:76
predict()
predict(
opts
):Promise
<ArrayLike
>
Predict regression value for X.
The predicted regression value of an input sample is computed as the weighted median prediction of the regressors in the ensemble.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. |
Returns Promise
<ArrayLike
>
Defined in generated/ensemble/AdaBoostRegressor.ts:212
score()
score(
opts
):Promise
<number
>
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum()
and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y
, disregarding the input features, would get a \(R^2\) score of 0.0.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike [] | Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted) , where n_samples_fitted is the number of samples used in the fitting for the estimator. |
opts.y ? | ArrayLike | True values for X . |
Returns Promise
<number
>
Defined in generated/ensemble/AdaBoostRegressor.ts:248
set_fit_request()
set_fit_request(
opts
):Promise
<any
>
Request metadata passed to the fit
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in fit . |
Returns Promise
<any
>
Defined in generated/ensemble/AdaBoostRegressor.ts:296
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/ensemble/AdaBoostRegressor.ts:336
staged_predict()
staged_predict(
opts
):Promise
<any
[]>
Return staged predictions for X.
The predicted regression value of an input sample is computed as the weighted median prediction of the regressors in the ensemble.
This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | The training input samples. |
Returns Promise
<any
[]>
Defined in generated/ensemble/AdaBoostRegressor.ts:376
staged_score()
staged_score(
opts
):Promise
<number
>
Return staged scores for X, y.
This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike | The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. |
opts.y ? | ArrayLike | Labels for X. |
Returns Promise
<number
>
Defined in generated/ensemble/AdaBoostRegressor.ts:414