Class: NuSVR
Nu Support Vector Regression.
Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR.
The implementation is based on libsvm.
Read more in the User Guide.
Constructors
new NuSVR()
new NuSVR(
opts?):NuSVR
Parameters
| Parameter | Type | Description |
|---|---|---|
opts? | object | - |
opts.C? | number | Penalty parameter C of the error term. For an intuitive visualization of the effects of scaling the regularization parameter C, see Scaling the regularization parameter for SVCs. |
opts.cache_size? | number | Specify the size of the kernel cache (in MB). |
opts.coef0? | number | Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’. |
opts.degree? | number | Degree of the polynomial kernel function (‘poly’). Must be non-negative. Ignored by all other kernels. |
opts.gamma? | number | "auto" | "scale" | Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. |
opts.kernel? | "sigmoid" | "precomputed" | "linear" | "poly" | "rbf" | Specifies the kernel type to be used in the algorithm. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix. |
opts.max_iter? | number | Hard limit on iterations within solver, or -1 for no limit. |
opts.nu? | number | An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. |
opts.shrinking? | boolean | Whether to use the shrinking heuristic. See the User Guide. |
opts.tol? | number | Tolerance for stopping criterion. |
opts.verbose? | boolean | Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. |
Returns NuSVR
Defined in generated/svm/NuSVR.ts:27
Properties
| Property | Type | Default value | Defined in |
|---|---|---|---|
_isDisposed | boolean | false | generated/svm/NuSVR.ts:25 |
_isInitialized | boolean | false | generated/svm/NuSVR.ts:24 |
_py | PythonBridge | undefined | generated/svm/NuSVR.ts:23 |
id | string | undefined | generated/svm/NuSVR.ts:20 |
opts | any | undefined | generated/svm/NuSVR.ts:21 |
Accessors
dual_coef_
Get Signature
get dual_coef_():
Promise<ArrayLike[]>
Coefficients of the support vector in the decision function.
Returns Promise<ArrayLike[]>
Defined in generated/svm/NuSVR.ts:403
feature_names_in_
Get Signature
get feature_names_in_():
Promise<ArrayLike>
Names of features seen during fit. Defined only when X has feature names that are all strings.
Returns Promise<ArrayLike>
Defined in generated/svm/NuSVR.ts:495
fit_status_
Get Signature
get fit_status_():
Promise<number>
0 if correctly fitted, 1 otherwise (will raise warning)
Returns Promise<number>
Defined in generated/svm/NuSVR.ts:426
intercept_
Get Signature
get intercept_():
Promise<ArrayLike>
Constants in decision function.
Returns Promise<ArrayLike>
Defined in generated/svm/NuSVR.ts:449
n_features_in_
Get Signature
get n_features_in_():
Promise<number>
Number of features seen during fit.
Returns Promise<number>
Defined in generated/svm/NuSVR.ts:472
n_iter_
Get Signature
get n_iter_():
Promise<number>
Number of iterations run by the optimization routine to fit the model.
Returns Promise<number>
Defined in generated/svm/NuSVR.ts:520
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge):void
Parameters
| Parameter | Type |
|---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/svm/NuSVR.ts:109
shape_fit_
Get Signature
get shape_fit_():
Promise<any[]>
Array dimensions of training vector X.
Returns Promise<any[]>
Defined in generated/svm/NuSVR.ts:542
support_
Get Signature
get support_():
Promise<ArrayLike>
Indices of support vectors.
Returns Promise<ArrayLike>
Defined in generated/svm/NuSVR.ts:565
support_vectors_
Get Signature
get support_vectors_():
Promise<ArrayLike[]>
Support vectors.
Returns Promise<ArrayLike[]>
Defined in generated/svm/NuSVR.ts:587
Methods
dispose()
dispose():
Promise<void>
Disposes of the underlying Python resources.
Once dispose() is called, the instance is no longer usable.
Returns Promise<void>
Defined in generated/svm/NuSVR.ts:160
fit()
fit(
opts):Promise<any>
Fit the SVM model according to the given training data.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.sample_weight? | ArrayLike | Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. |
opts.X? | ArrayLike | Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel=”precomputed”, the expected shape of X is (n_samples, n_samples). |
opts.y? | ArrayLike | Target values (class labels in classification, real numbers in regression). |
Returns Promise<any>
Defined in generated/svm/NuSVR.ts:177
get_metadata_routing()
get_metadata_routing(
opts):Promise<any>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns Promise<any>
Defined in generated/svm/NuSVR.ts:221
init()
init(
py):Promise<void>
Initializes the underlying Python resources.
This instance is not usable until the Promise returned by init() resolves.
Parameters
| Parameter | Type |
|---|---|
py | PythonBridge |
Returns Promise<void>
Defined in generated/svm/NuSVR.ts:122
predict()
predict(
opts):Promise<ArrayLike>
Perform regression on samples in X.
For an one-class model, +1 (inlier) or -1 (outlier) is returned.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike | For kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train). |
Returns Promise<ArrayLike>
Defined in generated/svm/NuSVR.ts:255
score()
score(
opts):Promise<number>
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum() and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.sample_weight? | ArrayLike | Sample weights. |
opts.X? | ArrayLike[] | Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator. |
opts.y? | ArrayLike | True values for X. |
Returns Promise<number>
Defined in generated/svm/NuSVR.ts:289
set_fit_request()
set_fit_request(
opts):Promise<any>
Request metadata passed to the fit method.
Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.sample_weight? | string | boolean | Metadata routing for sample_weight parameter in fit. |
Returns Promise<any>
Defined in generated/svm/NuSVR.ts:335
set_score_request()
set_score_request(
opts):Promise<any>
Request metadata passed to the score method.
Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.sample_weight? | string | boolean | Metadata routing for sample_weight parameter in score. |
Returns Promise<any>
Defined in generated/svm/NuSVR.ts:371