Class: LarsCV
Cross-validated Least Angle Regression model.
See glossary entry for cross-validation estimator.
Read more in the User Guide.
Constructors
new LarsCV()
new LarsCV(
opts?):LarsCV
Parameters
| Parameter | Type | Description | 
|---|---|---|
opts? | object | - | 
opts.copy_X? | boolean | If true, X will be copied; else, it may be overwritten. | 
opts.cv? | number | Determines the cross-validation splitting strategy. Possible inputs for cv are: | 
opts.eps? | number | The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. | 
opts.fit_intercept? | boolean | Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). | 
opts.max_iter? | number | Maximum number of iterations to perform. | 
opts.max_n_alphas? | number | The maximum number of points on the path used to compute the residuals in the cross-validation. | 
opts.n_jobs? | number | Number of CPUs to use during the cross validation. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details. | 
opts.precompute? | boolean | ArrayLike | "auto" | Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix cannot be passed as argument since we will use only subsets of X. | 
opts.verbose? | number | boolean | Sets the verbosity amount. | 
Returns LarsCV
Defined in generated/linear_model/LarsCV.ts:25
Properties
| Property | Type | Default value | Defined in | 
|---|---|---|---|
_isDisposed | boolean | false | generated/linear_model/LarsCV.ts:23 | 
_isInitialized | boolean | false | generated/linear_model/LarsCV.ts:22 | 
_py | PythonBridge | undefined | generated/linear_model/LarsCV.ts:21 | 
id | string | undefined | generated/linear_model/LarsCV.ts:18 | 
opts | any | undefined | generated/linear_model/LarsCV.ts:19 | 
Accessors
active_
Get Signature
get active_():
Promise<any>
Indices of active variables at the end of the path. If this is a list of lists, the outer list length is n_targets.
Returns Promise<any>
Defined in generated/linear_model/LarsCV.ts:378
alpha_
Get Signature
get alpha_():
Promise<number>
the estimated regularization parameter alpha
Returns Promise<number>
Defined in generated/linear_model/LarsCV.ts:468
alphas_
Get Signature
get alphas_():
Promise<ArrayLike>
the different values of alpha along the path
Returns Promise<ArrayLike>
Defined in generated/linear_model/LarsCV.ts:490
coef_
Get Signature
get coef_():
Promise<ArrayLike>
parameter vector (w in the formulation formula)
Returns Promise<ArrayLike>
Defined in generated/linear_model/LarsCV.ts:400
coef_path_
Get Signature
get coef_path_():
Promise<ArrayLike[]>
the varying values of the coefficients along the path
Returns Promise<ArrayLike[]>
Defined in generated/linear_model/LarsCV.ts:445
cv_alphas_
Get Signature
get cv_alphas_():
Promise<ArrayLike>
all the values of alpha along the path for the different folds
Returns Promise<ArrayLike>
Defined in generated/linear_model/LarsCV.ts:512
feature_names_in_
Get Signature
get feature_names_in_():
Promise<ArrayLike>
Names of features seen during fit. Defined only when X has feature names that are all strings.
Returns Promise<ArrayLike>
Defined in generated/linear_model/LarsCV.ts:603
intercept_
Get Signature
get intercept_():
Promise<number>
independent term in decision function
Returns Promise<number>
Defined in generated/linear_model/LarsCV.ts:422
mse_path_
Get Signature
get mse_path_():
Promise<ArrayLike[]>
the mean square error on left-out for each fold along the path (alpha values given by cv_alphas)
Returns Promise<ArrayLike[]>
Defined in generated/linear_model/LarsCV.ts:535
n_features_in_
Get Signature
get n_features_in_():
Promise<number>
Number of features seen during fit.
Returns Promise<number>
Defined in generated/linear_model/LarsCV.ts:580
n_iter_
Get Signature
get n_iter_():
Promise<number|ArrayLike>
the number of iterations run by Lars with the optimal alpha.
Returns Promise<number | ArrayLike>
Defined in generated/linear_model/LarsCV.ts:558
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge):void
Parameters
| Parameter | Type | 
|---|---|
pythonBridge | PythonBridge | 
Returns void
Defined in generated/linear_model/LarsCV.ts:87
Methods
dispose()
dispose():
Promise<void>
Disposes of the underlying Python resources.
Once dispose() is called, the instance is no longer usable.
Returns Promise<void>
Defined in generated/linear_model/LarsCV.ts:138
fit()
fit(
opts):Promise<any>
Fit the model using X, y as training data.
Parameters
| Parameter | Type | Description | 
|---|---|---|
opts | object | - | 
opts.params? | any | Parameters to be passed to the CV splitter. | 
opts.X? | ArrayLike[] | Training data. | 
opts.y? | ArrayLike | Target values. | 
Returns Promise<any>
Defined in generated/linear_model/LarsCV.ts:155
get_metadata_routing()
get_metadata_routing(
opts):Promise<any>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
| Parameter | Type | Description | 
|---|---|---|
opts | object | - | 
opts.routing? | any | A MetadataRouter encapsulating routing information. | 
Returns Promise<any>
Defined in generated/linear_model/LarsCV.ts:199
init()
init(
py):Promise<void>
Initializes the underlying Python resources.
This instance is not usable until the Promise returned by init() resolves.
Parameters
| Parameter | Type | 
|---|---|
py | PythonBridge | 
Returns Promise<void>
Defined in generated/linear_model/LarsCV.ts:100
predict()
predict(
opts):Promise<any>
Predict using the linear model.
Parameters
| Parameter | Type | Description | 
|---|---|---|
opts | object | - | 
opts.X? | any | Samples. | 
Returns Promise<any>
Defined in generated/linear_model/LarsCV.ts:231
score()
score(
opts):Promise<number>
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum() and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.
Parameters
| Parameter | Type | Description | 
|---|---|---|
opts | object | - | 
opts.sample_weight? | ArrayLike | Sample weights. | 
opts.X? | ArrayLike[] | Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator. | 
opts.y? | ArrayLike | True values for X. | 
Returns Promise<number>
Defined in generated/linear_model/LarsCV.ts:264
set_fit_request()
set_fit_request(
opts):Promise<any>
Request metadata passed to the fit method.
Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
| Parameter | Type | Description | 
|---|---|---|
opts | object | - | 
opts.Xy? | string | boolean | Metadata routing for Xy parameter in fit. | 
Returns Promise<any>
Defined in generated/linear_model/LarsCV.ts:310
set_score_request()
set_score_request(
opts):Promise<any>
Request metadata passed to the score method.
Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
| Parameter | Type | Description | 
|---|---|---|
opts | object | - | 
opts.sample_weight? | string | boolean | Metadata routing for sample_weight parameter in score. | 
Returns Promise<any>
Defined in generated/linear_model/LarsCV.ts:346