DocumentationClassesAdditiveChi2Sampler

Class: AdditiveChi2Sampler

Approximate feature map for additive chi2 kernel.

Uses sampling the fourier transform of the kernel characteristic at regular intervals.

Since the kernel that is to be approximated is additive, the components of the input vectors can be treated separately. Each entry in the original space is transformed into 2*sample_steps-1 features, where sample_steps is a parameter of the method. Typical values of sample_steps include 1, 2 and 3.

Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The default values should be reasonable.

Read more in the User Guide.

Python Reference

Constructors

new AdditiveChi2Sampler()

new AdditiveChi2Sampler(opts?): AdditiveChi2Sampler

Parameters

ParameterTypeDescription
opts?object-
opts.sample_interval?numberSampling interval. Must be specified when sample_steps not in {1,2,3}.
opts.sample_steps?numberGives the number of (complex) sampling points.

Returns AdditiveChi2Sampler

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:29

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/kernel_approximation/AdditiveChi2Sampler.ts:27
_isInitializedbooleanfalsegenerated/kernel_approximation/AdditiveChi2Sampler.ts:26
_pyPythonBridgeundefinedgenerated/kernel_approximation/AdditiveChi2Sampler.ts:25
idstringundefinedgenerated/kernel_approximation/AdditiveChi2Sampler.ts:22
optsanyundefinedgenerated/kernel_approximation/AdditiveChi2Sampler.ts:23

Accessors

feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:381


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:354


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:46

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:102


fit()

fit(opts): Promise<any>

Only validates estimator’s parameters.

This method allows to: (i) validate the estimator’s parameters and (ii) be consistent with the scikit-learn transformer API.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeTraining data, where n_samples is the number of samples and n_features is the number of features.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns Promise<any>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:121


fit_transform()

fit_transform(opts): Promise<any[]>

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyAdditional fit parameters.
opts.X?ArrayLike[]Input samples.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns Promise<any[]>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:162


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Get output feature names for transformation.

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyOnly used to validate feature names with the names seen in fit.

Returns Promise<any>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:208


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:246


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:59


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:284


transform()

transform(opts): Promise<any>

Apply approximate feature map to X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyTraining data, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<any>

Defined in generated/kernel_approximation/AdditiveChi2Sampler.ts:320