Class: Isomap

Isomap Embedding.

Non-linear dimensionality reduction through Isometric Mapping

Read more in the User Guide.

Python Reference

Constructors

new Isomap()

new Isomap(opts?): Isomap

Parameters

ParameterTypeDescription
opts?object-
opts.eigen_solver?"auto" | "arpack" | "dense"‘auto’ : Attempt to choose the most efficient solver for the given problem. ‘arpack’ : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. ‘dense’ : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition.
opts.max_iter?numberMaximum number of iterations for the arpack solver. not used if eigen_solver == ‘dense’.
opts.metric?anyThe metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by sklearn.metrics.pairwise_distances for its metric parameter. If metric is “precomputed”, X is assumed to be a distance matrix and must be square. X may be a Glossary.
opts.metric_params?anyAdditional keyword arguments for the metric function.
opts.n_components?numberNumber of coordinates for the manifold.
opts.n_jobs?numberThe number of parallel jobs to run. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details.
opts.n_neighbors?numberNumber of neighbors to consider for each point. If n_neighbors is an int, then radius must be undefined.
opts.neighbors_algorithm?"auto" | "ball_tree" | "kd_tree" | "brute"Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance.
opts.p?numberParameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
opts.path_method?"auto" | "FW" | "D"Method to use in finding shortest path. ‘auto’ : attempt to choose the best algorithm automatically. ‘FW’ : Floyd-Warshall algorithm. ‘D’ : Dijkstra’s algorithm.
opts.radius?numberLimiting distance of neighbors to return. If radius is a float, then n_neighbors must be set to undefined.
opts.tol?numberConvergence tolerance passed to arpack or lobpcg. not used if eigen_solver == ‘dense’.

Returns Isomap

Defined in generated/manifold/Isomap.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/manifold/Isomap.ts:23
_isInitializedbooleanfalsegenerated/manifold/Isomap.ts:22
_pyPythonBridgeundefinedgenerated/manifold/Isomap.ts:21
idstringundefinedgenerated/manifold/Isomap.ts:18
optsanyundefinedgenerated/manifold/Isomap.ts:19

Accessors

dist_matrix_

Get Signature

get dist_matrix_(): Promise<ArrayLike>

Stores the geodesic distance matrix of training data.

Returns Promise<ArrayLike>

Defined in generated/manifold/Isomap.ts:493


embedding_

Get Signature

get embedding_(): Promise<ArrayLike>

Stores the embedding vectors.

Returns Promise<ArrayLike>

Defined in generated/manifold/Isomap.ts:425


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/manifold/Isomap.ts:539


kernel_pca_

Get Signature

get kernel_pca_(): Promise<any>

KernelPCA object used to implement the embedding.

Returns Promise<any>

Defined in generated/manifold/Isomap.ts:448


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/manifold/Isomap.ts:516


nbrs_

Get Signature

get nbrs_(): Promise<any>

Stores nearest neighbors instance, including BallTree or KDtree if applicable.

Returns Promise<any>

Defined in generated/manifold/Isomap.ts:471


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/manifold/Isomap.ts:116

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/manifold/Isomap.ts:167


fit()

fit(opts): Promise<any>

Compute the embedding vectors for data X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anySample data, shape = (n_samples, n_features), in the form of a numpy array, sparse matrix, precomputed tree, or NearestNeighbors object.
opts.y?anyNot used, present for API consistency by convention.

Returns Promise<any>

Defined in generated/manifold/Isomap.ts:184


fit_transform()

fit_transform(opts): Promise<ArrayLike>

Fit the model from data in X and transform X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyTraining vector, where n_samples is the number of samples and n_features is the number of features.
opts.y?anyNot used, present for API consistency by convention.

Returns Promise<ArrayLike>

Defined in generated/manifold/Isomap.ts:221


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Get output feature names for transformation.

The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: \["class_name0", "class_name1", "class_name2"\].

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyOnly used to validate feature names with the names seen in fit.

Returns Promise<any>

Defined in generated/manifold/Isomap.ts:260


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/manifold/Isomap.ts:294


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/manifold/Isomap.ts:129


reconstruction_error()

reconstruction_error(opts): Promise<any>

Compute the reconstruction error for the embedding.

Parameters

ParameterTypeDescription
optsobject-
opts.reconstruction_error?numberReconstruction error.

Returns Promise<any>

Defined in generated/manifold/Isomap.ts:326


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/manifold/Isomap.ts:360


transform()

transform(opts): Promise<ArrayLike>

Transform X.

This is implemented by linking the points X into the graph of geodesic distances of the training data. First the n_neighbors nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyIf neighbors_algorithm=’precomputed’, X is assumed to be a distance matrix or a sparse graph of shape (n_queries, n_samples_fit).

Returns Promise<ArrayLike>

Defined in generated/manifold/Isomap.ts:394