Class: SelfTrainingClassifier
Self-training classifier.
This metaestimator allows a given supervised classifier to function as a semi-supervised classifier, allowing it to learn from unlabeled data. It does this by iteratively predicting pseudo-labels for the unlabeled data and adding them to the training set.
The classifier will continue iterating until either max_iter is reached, or no pseudo-labels were added to the training set in the previous iteration.
Read more in the User Guide.
Constructors
new SelfTrainingClassifier()
new SelfTrainingClassifier(
opts
?):SelfTrainingClassifier
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.base_estimator ? | any | An estimator object implementing fit and predict_proba . Invoking the fit method will fit a clone of the passed estimator, which will be stored in the base_estimator_ attribute. |
opts.criterion ? | "threshold" | "k_best" | The selection criterion used to select which labels to add to the training set. If 'threshold' , pseudo-labels with prediction probabilities above threshold are added to the dataset. If 'k_best' , the k_best pseudo-labels with highest prediction probabilities are added to the dataset. When using the ‘threshold’ criterion, a well calibrated classifier should be used. |
opts.k_best ? | number | The amount of samples to add in each iteration. Only used when criterion='k_best' . |
opts.max_iter ? | number | Maximum number of iterations allowed. Should be greater than or equal to 0. If it is undefined , the classifier will continue to predict labels until no new pseudo-labels are added, or all unlabeled samples have been labeled. |
opts.threshold ? | number | The decision threshold for use with criterion='threshold' . Should be in [0, 1). When using the 'threshold' criterion, a well calibrated classifier should be used. |
opts.verbose ? | boolean | Enable verbose output. |
Returns SelfTrainingClassifier
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:27
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/semi_supervised/SelfTrainingClassifier.ts:25 |
_isInitialized | boolean | false | generated/semi_supervised/SelfTrainingClassifier.ts:24 |
_py | PythonBridge | undefined | generated/semi_supervised/SelfTrainingClassifier.ts:23 |
id | string | undefined | generated/semi_supervised/SelfTrainingClassifier.ts:20 |
opts | any | undefined | generated/semi_supervised/SelfTrainingClassifier.ts:21 |
Accessors
base_estimator_
Get Signature
get base_estimator_():
Promise
<any
>
The fitted estimator.
Returns Promise
<any
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:399
classes_
Get Signature
get classes_():
Promise
<ArrayLike
>
Class labels for each output. (Taken from the trained base_estimator_
).
Returns Promise
<ArrayLike
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:426
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:534
labeled_iter_
Get Signature
get labeled_iter_():
Promise
<ArrayLike
>
The iteration in which each sample was labeled. When a sample has iteration 0, the sample was already labeled in the original dataset. When a sample has iteration -1, the sample was not labeled in any iteration.
Returns Promise
<ArrayLike
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:480
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:507
n_iter_
Get Signature
get n_iter_():
Promise
<number
>
The number of rounds of self-training, that is the number of times the base estimator is fitted on relabeled variants of the training set.
Returns Promise
<number
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:561
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:72
termination_condition_
Get Signature
get termination_condition_():
Promise
<"max_iter"
|"no_change"
|"all_labeled"
>
The reason that fitting was stopped.
Returns Promise
<"max_iter"
| "no_change"
| "all_labeled"
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:588
transduction_
Get Signature
get transduction_():
Promise
<ArrayLike
>
The labels used for the final fit of the classifier, including pseudo-labels added during fit.
Returns Promise
<ArrayLike
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:453
Methods
decision_function()
decision_function(
opts
):Promise
<ArrayLike
[]>
Call decision function of the base_estimator
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Array representing the data. |
Returns Promise
<ArrayLike
[]>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:145
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:128
fit()
fit(
opts
):Promise
<any
>
Fit self-training classifier using X
, y
as training data.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Array representing the data. |
opts.y ? | any | Array representing the labels. Unlabeled samples should have the label -1. |
Returns Promise
<any
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:181
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Raise NotImplementedError
.
This estimator does not support metadata routing yet.
Parameters
Parameter | Type |
---|---|
opts | object |
Returns Promise
<any
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:222
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:85
predict()
predict(
opts
):Promise
<ArrayLike
>
Predict the classes of X
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Array representing the data. |
Returns Promise
<ArrayLike
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:252
predict_log_proba()
predict_log_proba(
opts
):Promise
<ArrayLike
[]>
Predict log probability for each possible outcome.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Array representing the data. |
Returns Promise
<ArrayLike
[]>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:288
predict_proba()
predict_proba(
opts
):Promise
<ArrayLike
[]>
Predict probability for each possible outcome.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Array representing the data. |
Returns Promise
<ArrayLike
[]>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:324
score()
score(
opts
):Promise
<number
>
Call score on the base_estimator
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Array representing the data. |
opts.y ? | ArrayLike | Array representing the labels. |
Returns Promise
<number
>
Defined in generated/semi_supervised/SelfTrainingClassifier.ts:360