DocumentationClassesSelfTrainingClassifier

Class: SelfTrainingClassifier

Self-training classifier.

This metaestimator allows a given supervised classifier to function as a semi-supervised classifier, allowing it to learn from unlabeled data. It does this by iteratively predicting pseudo-labels for the unlabeled data and adding them to the training set.

The classifier will continue iterating until either max_iter is reached, or no pseudo-labels were added to the training set in the previous iteration.

Read more in the User Guide.

Python Reference

Constructors

new SelfTrainingClassifier()

new SelfTrainingClassifier(opts?): SelfTrainingClassifier

Parameters

ParameterTypeDescription
opts?object-
opts.base_estimator?anyAn estimator object implementing fit and predict_proba. Invoking the fit method will fit a clone of the passed estimator, which will be stored in the base_estimator_ attribute.
opts.criterion?"threshold" | "k_best"The selection criterion used to select which labels to add to the training set. If 'threshold', pseudo-labels with prediction probabilities above threshold are added to the dataset. If 'k_best', the k_best pseudo-labels with highest prediction probabilities are added to the dataset. When using the ‘threshold’ criterion, a well calibrated classifier should be used.
opts.k_best?numberThe amount of samples to add in each iteration. Only used when criterion='k_best'.
opts.max_iter?numberMaximum number of iterations allowed. Should be greater than or equal to 0. If it is undefined, the classifier will continue to predict labels until no new pseudo-labels are added, or all unlabeled samples have been labeled.
opts.threshold?numberThe decision threshold for use with criterion='threshold'. Should be in [0, 1). When using the 'threshold' criterion, a well calibrated classifier should be used.
opts.verbose?booleanEnable verbose output.

Returns SelfTrainingClassifier

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/semi_supervised/SelfTrainingClassifier.ts:25
_isInitializedbooleanfalsegenerated/semi_supervised/SelfTrainingClassifier.ts:24
_pyPythonBridgeundefinedgenerated/semi_supervised/SelfTrainingClassifier.ts:23
idstringundefinedgenerated/semi_supervised/SelfTrainingClassifier.ts:20
optsanyundefinedgenerated/semi_supervised/SelfTrainingClassifier.ts:21

Accessors

base_estimator_

Get Signature

get base_estimator_(): Promise<any>

The fitted estimator.

Returns Promise<any>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:399


classes_

Get Signature

get classes_(): Promise<ArrayLike>

Class labels for each output. (Taken from the trained base_estimator_).

Returns Promise<ArrayLike>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:426


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:534


labeled_iter_

Get Signature

get labeled_iter_(): Promise<ArrayLike>

The iteration in which each sample was labeled. When a sample has iteration 0, the sample was already labeled in the original dataset. When a sample has iteration -1, the sample was not labeled in any iteration.

Returns Promise<ArrayLike>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:480


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:507


n_iter_

Get Signature

get n_iter_(): Promise<number>

The number of rounds of self-training, that is the number of times the base estimator is fitted on relabeled variants of the training set.

Returns Promise<number>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:561


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:72


termination_condition_

Get Signature

get termination_condition_(): Promise<"max_iter" | "no_change" | "all_labeled">

The reason that fitting was stopped.

Returns Promise<"max_iter" | "no_change" | "all_labeled">

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:588


transduction_

Get Signature

get transduction_(): Promise<ArrayLike>

The labels used for the final fit of the classifier, including pseudo-labels added during fit.

Returns Promise<ArrayLike>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:453

Methods

decision_function()

decision_function(opts): Promise<ArrayLike[]>

Call decision function of the base_estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeArray representing the data.

Returns Promise<ArrayLike[]>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:145


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:128


fit()

fit(opts): Promise<any>

Fit self-training classifier using X, y as training data.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeArray representing the data.
opts.y?anyArray representing the labels. Unlabeled samples should have the label -1.

Returns Promise<any>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:181


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Raise NotImplementedError.

This estimator does not support metadata routing yet.

Parameters

ParameterType
optsobject

Returns Promise<any>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:222


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:85


predict()

predict(opts): Promise<ArrayLike>

Predict the classes of X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeArray representing the data.

Returns Promise<ArrayLike>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:252


predict_log_proba()

predict_log_proba(opts): Promise<ArrayLike[]>

Predict log probability for each possible outcome.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeArray representing the data.

Returns Promise<ArrayLike[]>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:288


predict_proba()

predict_proba(opts): Promise<ArrayLike[]>

Predict probability for each possible outcome.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeArray representing the data.

Returns Promise<ArrayLike[]>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:324


score()

score(opts): Promise<number>

Call score on the base_estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeArray representing the data.
opts.y?ArrayLikeArray representing the labels.

Returns Promise<number>

Defined in generated/semi_supervised/SelfTrainingClassifier.ts:360