DocumentationClassesVarianceThreshold

Class: VarianceThreshold

Feature selector that removes all low-variance features.

This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning.

Read more in the User Guide.

Python Reference

Constructors

new VarianceThreshold()

new VarianceThreshold(opts?): VarianceThreshold

Parameters

ParameterTypeDescription
opts?object-
opts.threshold?numberFeatures with a training-set variance lower than this threshold will be removed. The default is to keep all features with non-zero variance, i.e. remove the features that have the same value in all samples.

Returns VarianceThreshold

Defined in generated/feature_selection/VarianceThreshold.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/feature_selection/VarianceThreshold.ts:23
_isInitializedbooleanfalsegenerated/feature_selection/VarianceThreshold.ts:22
_pyPythonBridgeundefinedgenerated/feature_selection/VarianceThreshold.ts:21
idstringundefinedgenerated/feature_selection/VarianceThreshold.ts:18
optsanyundefinedgenerated/feature_selection/VarianceThreshold.ts:19

Accessors

feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/feature_selection/VarianceThreshold.ts:465


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/feature_selection/VarianceThreshold.ts:438


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/feature_selection/VarianceThreshold.ts:37


variances_

Get Signature

get variances_(): Promise<any>

Variances of individual features.

Returns Promise<any>

Defined in generated/feature_selection/VarianceThreshold.ts:411

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/feature_selection/VarianceThreshold.ts:91


fit()

fit(opts): Promise<any>

Learn empirical variances from X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyData from which to compute variances, where n_samples is the number of samples and n_features is the number of features.
opts.y?anyIgnored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline.

Returns Promise<any>

Defined in generated/feature_selection/VarianceThreshold.ts:108


fit_transform()

fit_transform(opts): Promise<any[]>

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyAdditional fit parameters.
opts.X?ArrayLike[]Input samples.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns Promise<any[]>

Defined in generated/feature_selection/VarianceThreshold.ts:149


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Mask feature names according to selected features.

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyInput features.

Returns Promise<any>

Defined in generated/feature_selection/VarianceThreshold.ts:195


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/feature_selection/VarianceThreshold.ts:233


get_support()

get_support(opts): Promise<any>

Get a mask, or integer index, of the features selected.

Parameters

ParameterTypeDescription
optsobject-
opts.indices?booleanIf true, the return value will be an array of integers, rather than a boolean mask.

Returns Promise<any>

Defined in generated/feature_selection/VarianceThreshold.ts:269


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/feature_selection/VarianceThreshold.ts:50


inverse_transform()

inverse_transform(opts): Promise<any>

Reverse the transformation operation.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any>

Defined in generated/feature_selection/VarianceThreshold.ts:305


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/feature_selection/VarianceThreshold.ts:343


transform()

transform(opts): Promise<any>

Reduce X to the selected features.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any>

Defined in generated/feature_selection/VarianceThreshold.ts:377