Class: PLSSVD
Partial Least Square SVD.
This transformer simply performs a SVD on the cross-covariance matrix X'Y. It is able to project both the training data X and the targets Y. The training data X is projected on the left singular vectors, while the targets are projected on the right singular vectors.
Read more in the User Guide.
Constructors
new PLSSVD()
new PLSSVD(
opts?):PLSSVD
Parameters
| Parameter | Type | Description |
|---|---|---|
opts? | object | - |
opts.copy? | boolean | Whether to copy X and Y in fit before applying centering, and potentially scaling. If false, these operations will be done inplace, modifying both arrays. |
opts.n_components? | number | The number of components to keep. Should be in \[1, min(n_samples, n_features, n_targets)\]. |
opts.scale? | boolean | Whether to scale X and Y. |
Returns PLSSVD
Defined in generated/cross_decomposition/PLSSVD.ts:25
Properties
| Property | Type | Default value | Defined in |
|---|---|---|---|
_isDisposed | boolean | false | generated/cross_decomposition/PLSSVD.ts:23 |
_isInitialized | boolean | false | generated/cross_decomposition/PLSSVD.ts:22 |
_py | PythonBridge | undefined | generated/cross_decomposition/PLSSVD.ts:21 |
id | string | undefined | generated/cross_decomposition/PLSSVD.ts:18 |
opts | any | undefined | generated/cross_decomposition/PLSSVD.ts:19 |
Accessors
feature_names_in_
Get Signature
get feature_names_in_():
Promise<ArrayLike>
Names of features seen during fit. Defined only when X has feature names that are all strings.
Returns Promise<ArrayLike>
Defined in generated/cross_decomposition/PLSSVD.ts:411
n_features_in_
Get Signature
get n_features_in_():
Promise<number>
Number of features seen during fit.
Returns Promise<number>
Defined in generated/cross_decomposition/PLSSVD.ts:388
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge):void
Parameters
| Parameter | Type |
|---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/cross_decomposition/PLSSVD.ts:51
x_weights_
Get Signature
get x_weights_():
Promise<ArrayLike[]>
The left singular vectors of the SVD of the cross-covariance matrix. Used to project X in transform.
Returns Promise<ArrayLike[]>
Defined in generated/cross_decomposition/PLSSVD.ts:342
y_weights_
Get Signature
get y_weights_():
Promise<any>
The right singular vectors of the SVD of the cross-covariance matrix. Used to project X in transform.
Returns Promise<any>
Defined in generated/cross_decomposition/PLSSVD.ts:365
Methods
dispose()
dispose():
Promise<void>
Disposes of the underlying Python resources.
Once dispose() is called, the instance is no longer usable.
Returns Promise<void>
Defined in generated/cross_decomposition/PLSSVD.ts:102
fit()
fit(
opts):Promise<any>
Fit model to data.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike[] | Training samples. |
opts.y? | ArrayLike | Targets. |
opts.Y? | ArrayLike | Targets. |
Returns Promise<any>
Defined in generated/cross_decomposition/PLSSVD.ts:119
fit_transform()
fit_transform(
opts):Promise<ArrayLike>
Learn and apply the dimensionality reduction.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike[] | Training samples. |
opts.y? | ArrayLike | Targets. |
Returns Promise<ArrayLike>
Defined in generated/cross_decomposition/PLSSVD.ts:161
get_feature_names_out()
get_feature_names_out(
opts):Promise<any>
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: \["class_name0", "class_name1", "class_name2"\].
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.input_features? | any | Only used to validate feature names with the names seen in fit. |
Returns Promise<any>
Defined in generated/cross_decomposition/PLSSVD.ts:200
get_metadata_routing()
get_metadata_routing(
opts):Promise<any>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns Promise<any>
Defined in generated/cross_decomposition/PLSSVD.ts:234
init()
init(
py):Promise<void>
Initializes the underlying Python resources.
This instance is not usable until the Promise returned by init() resolves.
Parameters
| Parameter | Type |
|---|---|
py | PythonBridge |
Returns Promise<void>
Defined in generated/cross_decomposition/PLSSVD.ts:64
set_output()
set_output(
opts):Promise<any>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.transform? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform. |
Returns Promise<any>
Defined in generated/cross_decomposition/PLSSVD.ts:268
transform()
transform(
opts):Promise<ArrayLike>
Apply the dimensionality reduction.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike[] | Samples to be transformed. |
opts.y? | ArrayLike | Targets. |
opts.Y? | ArrayLike | Targets. |
Returns Promise<ArrayLike>
Defined in generated/cross_decomposition/PLSSVD.ts:300