Class: PrecisionRecallDisplay
Precision Recall visualization.
It is recommend to use from_estimator
or from_predictions
to create a PrecisionRecallDisplay
. All parameters are stored as attributes.
Read more in the User Guide.
Constructors
new PrecisionRecallDisplay()
new PrecisionRecallDisplay(
opts
?):PrecisionRecallDisplay
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.average_precision ? | number | Average precision. If undefined , the average precision is not shown. |
opts.estimator_name ? | string | Name of estimator. If undefined , then the estimator name is not shown. |
opts.pos_label ? | string | number | boolean | The class considered as the positive class. If undefined , the class will not be shown in the legend. |
opts.precision ? | ArrayLike | Precision values. |
opts.prevalence_pos_label ? | number | The prevalence of the positive label. It is used for plotting the chance level line. If undefined , the chance level line will not be plotted even if plot_chance_level is set to true when plotting. |
opts.recall ? | ArrayLike | Recall values. |
Returns PrecisionRecallDisplay
Defined in generated/metrics/PrecisionRecallDisplay.ts:25
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/metrics/PrecisionRecallDisplay.ts:23 |
_isInitialized | boolean | false | generated/metrics/PrecisionRecallDisplay.ts:22 |
_py | PythonBridge | undefined | generated/metrics/PrecisionRecallDisplay.ts:21 |
id | string | undefined | generated/metrics/PrecisionRecallDisplay.ts:18 |
opts | any | undefined | generated/metrics/PrecisionRecallDisplay.ts:19 |
Accessors
ax_
Get Signature
get ax_():
Promise
<any
>
Axes with precision recall curve.
Returns Promise
<any
>
Defined in generated/metrics/PrecisionRecallDisplay.ts:427
chance_level_
Get Signature
get chance_level_():
Promise
<any
>
The chance level line. It is undefined
if the chance level is not plotted.
Returns Promise
<any
>
Defined in generated/metrics/PrecisionRecallDisplay.ts:400
figure_
Get Signature
get figure_():
Promise
<any
>
Figure containing the curve.
Returns Promise
<any
>
Defined in generated/metrics/PrecisionRecallDisplay.ts:454
line_
Get Signature
get line_():
Promise
<any
>
Precision recall curve.
Returns Promise
<any
>
Defined in generated/metrics/PrecisionRecallDisplay.ts:373
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/metrics/PrecisionRecallDisplay.ts:60
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/metrics/PrecisionRecallDisplay.ts:116
from_estimator()
from_estimator(
opts
):Promise
<any
>
Plot precision-recall curve given an estimator and some data.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.ax ? | any | Axes object to plot on. If undefined , a new figure and axes is created. |
opts.chance_level_kw ? | any | Keyword arguments to be passed to matplotlib’s plot for rendering the chance level line. |
opts.drop_intermediate ? | boolean | Whether to drop some suboptimal thresholds which would not appear on a plotted precision-recall curve. This is useful in order to create lighter precision-recall curves. |
opts.estimator ? | any | Fitted classifier or a fitted Pipeline in which the last estimator is a classifier. |
opts.kwargs ? | any | Keyword arguments to be passed to matplotlib’s plot . |
opts.name ? | string | Name for labeling curve. If undefined , no name is used. |
opts.plot_chance_level ? | boolean | Whether to plot the chance level. The chance level is the prevalence of the positive label computed from the data passed during from_estimator or from_predictions call. |
opts.pos_label ? | string | number | boolean | The class considered as the positive class when computing the precision and recall metrics. By default, estimators.classes_\[1\] is considered as the positive class. |
opts.response_method ? | "auto" | "predict_proba" | "decision_function" | Specifies whether to use predict_proba or decision_function as the target response. If set to ‘auto’, predict_proba is tried first and if it does not exist decision_function is tried next. |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike | Input values. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<any
>
Defined in generated/metrics/PrecisionRecallDisplay.ts:133
from_predictions()
from_predictions(
opts
):Promise
<any
>
Plot precision-recall curve given binary class predictions.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.ax ? | any | Axes object to plot on. If undefined , a new figure and axes is created. |
opts.chance_level_kw ? | any | Keyword arguments to be passed to matplotlib’s plot for rendering the chance level line. |
opts.drop_intermediate ? | boolean | Whether to drop some suboptimal thresholds which would not appear on a plotted precision-recall curve. This is useful in order to create lighter precision-recall curves. |
opts.kwargs ? | any | Keyword arguments to be passed to matplotlib’s plot . |
opts.name ? | string | Name for labeling curve. If undefined , name will be set to "Classifier" . |
opts.plot_chance_level ? | boolean | Whether to plot the chance level. The chance level is the prevalence of the positive label computed from the data passed during from_estimator or from_predictions call. |
opts.pos_label ? | string | number | boolean | The class considered as the positive class when computing the precision and recall metrics. |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.y_pred ? | ArrayLike | Estimated probabilities or output of decision function. |
opts.y_true ? | ArrayLike | True binary labels. |
Returns Promise
<any
>
Defined in generated/metrics/PrecisionRecallDisplay.ts:230
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/metrics/PrecisionRecallDisplay.ts:73
plot()
plot(
opts
):Promise
<any
>
Plot visualization.
Extra keyword arguments will be passed to matplotlib’s plot
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.ax ? | any | Axes object to plot on. If undefined , a new figure and axes is created. |
opts.chance_level_kw ? | any | Keyword arguments to be passed to matplotlib’s plot for rendering the chance level line. |
opts.kwargs ? | any | Keyword arguments to be passed to matplotlib’s plot . |
opts.name ? | string | Name of precision recall curve for labeling. If undefined , use estimator_name if not undefined , otherwise no labeling is shown. |
opts.plot_chance_level ? | boolean | Whether to plot the chance level. The chance level is the prevalence of the positive label computed from the data passed during from_estimator or from_predictions call. |
Returns Promise
<any
>