Class: VotingRegressor
Prediction voting regressor for unfitted estimators.
A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the whole dataset. Then it averages the individual predictions to form a final prediction.
Read more in the User Guide.
Constructors
new VotingRegressor()
new VotingRegressor(
opts
?):VotingRegressor
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.estimators ? | any | Invoking the fit method on the VotingRegressor will fit clones of those original estimators that will be stored in the class attribute self.estimators_ . An estimator can be set to 'drop' using set_params . |
opts.n_jobs ? | number | The number of jobs to run in parallel for fit . undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details. |
opts.verbose ? | boolean | If true , the time elapsed while fitting will be printed as it is completed. |
opts.weights ? | ArrayLike | Sequence of weights (float or int ) to weight the occurrences of predicted values before averaging. Uses uniform weights if undefined . |
Returns VotingRegressor
Defined in generated/ensemble/VotingRegressor.ts:25
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/ensemble/VotingRegressor.ts:23 |
_isInitialized | boolean | false | generated/ensemble/VotingRegressor.ts:22 |
_py | PythonBridge | undefined | generated/ensemble/VotingRegressor.ts:21 |
id | string | undefined | generated/ensemble/VotingRegressor.ts:18 |
opts | any | undefined | generated/ensemble/VotingRegressor.ts:19 |
Accessors
estimators_
Get Signature
get estimators_():
Promise
<any
>
The collection of fitted sub-estimators as defined in estimators
that are not ‘drop’.
Returns Promise
<any
>
Defined in generated/ensemble/VotingRegressor.ts:502
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Only defined if the underlying estimators expose such an attribute when fit.
Returns Promise
<ArrayLike
>
Defined in generated/ensemble/VotingRegressor.ts:552
named_estimators_
Get Signature
get named_estimators_():
Promise
<any
>
Attribute to access any fitted sub-estimators by name.
Returns Promise
<any
>
Defined in generated/ensemble/VotingRegressor.ts:527
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/ensemble/VotingRegressor.ts:52
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/ensemble/VotingRegressor.ts:104
fit()
fit(
opts
):Promise
<any
>
Fit the estimators.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.fit_params ? | any | Parameters to pass to the underlying estimators. |
opts.sample_weight ? | ArrayLike | Sample weights. If undefined , then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights. |
opts.X ? | ArrayLike | Training vectors, where n_samples is the number of samples and n_features is the number of features. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<any
>
Defined in generated/ensemble/VotingRegressor.ts:121
fit_transform()
fit_transform(
opts
):Promise
<any
[]>
Return class labels or probabilities for each estimator.
Return predictions for X for each estimator.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.fit_params ? | any | Additional fit parameters. |
opts.X ? | ArrayLike | Input samples. |
opts.y ? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns Promise
<any
[]>
Defined in generated/ensemble/VotingRegressor.ts:170
get_feature_names_out()
get_feature_names_out(
opts
):Promise
<any
>
Get output feature names for transformation.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.input_features ? | any | Not used, present here for API consistency by convention. |
Returns Promise
<any
>
Defined in generated/ensemble/VotingRegressor.ts:212
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRouter encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/ensemble/VotingRegressor.ts:248
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/ensemble/VotingRegressor.ts:65
predict()
predict(
opts
):Promise
<ArrayLike
>
Predict regression target for X.
The predicted regression target of an input sample is computed as the mean predicted regression targets of the estimators in the ensemble.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | The input samples. |
Returns Promise
<ArrayLike
>
Defined in generated/ensemble/VotingRegressor.ts:284
score()
score(
opts
):Promise
<number
>
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum()
and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y
, disregarding the input features, would get a \(R^2\) score of 0.0.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike [] | Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted) , where n_samples_fitted is the number of samples used in the fitting for the estimator. |
opts.y ? | ArrayLike | True values for X . |
Returns Promise
<number
>
Defined in generated/ensemble/VotingRegressor.ts:318
set_fit_request()
set_fit_request(
opts
):Promise
<any
>
Request metadata passed to the fit
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in fit . |
Returns Promise
<any
>
Defined in generated/ensemble/VotingRegressor.ts:364
set_output()
set_output(
opts
):Promise
<any
>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.transform ? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform . |
Returns Promise
<any
>
Defined in generated/ensemble/VotingRegressor.ts:400
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/ensemble/VotingRegressor.ts:436
transform()
transform(
opts
):Promise
<ArrayLike
[]>
Return predictions for X for each estimator.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | The input samples. |
Returns Promise
<ArrayLike
[]>
Defined in generated/ensemble/VotingRegressor.ts:470