DocumentationClassesOrthogonalMatchingPursuit

Class: OrthogonalMatchingPursuit

Orthogonal Matching Pursuit model (OMP).

Read more in the User Guide.

Python Reference

Constructors

new OrthogonalMatchingPursuit()

new OrthogonalMatchingPursuit(opts?): OrthogonalMatchingPursuit

Parameters

ParameterTypeDescription
opts?object-
opts.fit_intercept?booleanWhether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
opts.n_nonzero_coefs?numberDesired number of non-zero entries in the solution. Ignored if tol is set. When undefined and tol is also undefined, this value is either set to 10% of n_features or 1, whichever is greater.
opts.precompute?boolean | "auto"Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when n_targets or n_samples is very large. Note that if you already have such matrices, you can pass them directly to the fit method.
opts.tol?numberMaximum squared norm of the residual. If not undefined, overrides n_nonzero_coefs.

Returns OrthogonalMatchingPursuit

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:23

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/linear_model/OrthogonalMatchingPursuit.ts:21
_isInitializedbooleanfalsegenerated/linear_model/OrthogonalMatchingPursuit.ts:20
_pyPythonBridgeundefinedgenerated/linear_model/OrthogonalMatchingPursuit.ts:19
idstringundefinedgenerated/linear_model/OrthogonalMatchingPursuit.ts:16
optsanyundefinedgenerated/linear_model/OrthogonalMatchingPursuit.ts:17

Accessors

coef_

Get Signature

get coef_(): Promise<ArrayLike>

Parameter vector (w in the formula).

Returns Promise<ArrayLike>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:326


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:461


intercept_

Get Signature

get intercept_(): Promise<number | ArrayLike>

Independent term in decision function.

Returns Promise<number | ArrayLike>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:353


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:434


n_iter_

Get Signature

get n_iter_(): Promise<number | ArrayLike>

Number of active features across every target.

Returns Promise<number | ArrayLike>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:380


n_nonzero_coefs_

Get Signature

get n_nonzero_coefs_(): Promise<number>

The number of non-zero coefficients in the solution or undefined when tol is set. If n_nonzero_coefs is undefined and tol is undefined this value is either set to 10% of n_features or 1, whichever is greater.

Returns Promise<number>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:407


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:52

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:108


fit()

fit(opts): Promise<any>

Fit the model using X, y as training data.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Training data.
opts.y?ArrayLikeTarget values. Will be cast to X’s dtype if necessary.

Returns Promise<any>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:125


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:166


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:65


predict()

predict(opts): Promise<any>

Predict using the linear model.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anySamples.

Returns Promise<any>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:202


score()

score(opts): Promise<number>

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum() and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
opts.y?ArrayLikeTrue values for X.

Returns Promise<number>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:240


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:290