Class: OrthogonalMatchingPursuit
Orthogonal Matching Pursuit model (OMP).
Read more in the User Guide.
Constructors
new OrthogonalMatchingPursuit()
new OrthogonalMatchingPursuit(
opts
?):OrthogonalMatchingPursuit
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.fit_intercept ? | boolean | Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). |
opts.n_nonzero_coefs ? | number | Desired number of non-zero entries in the solution. Ignored if tol is set. When undefined and tol is also undefined , this value is either set to 10% of n_features or 1, whichever is greater. |
opts.precompute ? | boolean | "auto" | Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when n_targets or n_samples is very large. Note that if you already have such matrices, you can pass them directly to the fit method. |
opts.tol ? | number | Maximum squared norm of the residual. If not undefined , overrides n_nonzero_coefs. |
Returns OrthogonalMatchingPursuit
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:23
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/linear_model/OrthogonalMatchingPursuit.ts:21 |
_isInitialized | boolean | false | generated/linear_model/OrthogonalMatchingPursuit.ts:20 |
_py | PythonBridge | undefined | generated/linear_model/OrthogonalMatchingPursuit.ts:19 |
id | string | undefined | generated/linear_model/OrthogonalMatchingPursuit.ts:16 |
opts | any | undefined | generated/linear_model/OrthogonalMatchingPursuit.ts:17 |
Accessors
coef_
Get Signature
get coef_():
Promise
<ArrayLike
>
Parameter vector (w in the formula).
Returns Promise
<ArrayLike
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:326
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:461
intercept_
Get Signature
get intercept_():
Promise
<number
|ArrayLike
>
Independent term in decision function.
Returns Promise
<number
| ArrayLike
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:353
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:434
n_iter_
Get Signature
get n_iter_():
Promise
<number
|ArrayLike
>
Number of active features across every target.
Returns Promise
<number
| ArrayLike
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:380
n_nonzero_coefs_
Get Signature
get n_nonzero_coefs_():
Promise
<number
>
The number of non-zero coefficients in the solution or undefined
when tol
is set. If n_nonzero_coefs
is undefined
and tol
is undefined
this value is either set to 10% of n_features
or 1, whichever is greater.
Returns Promise
<number
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:407
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:52
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:108
fit()
fit(
opts
):Promise
<any
>
Fit the model using X, y as training data.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | Training data. |
opts.y ? | ArrayLike | Target values. Will be cast to X’s dtype if necessary. |
Returns Promise
<any
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:125
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:166
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:65
predict()
predict(
opts
):Promise
<any
>
Predict using the linear model.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | any | Samples. |
Returns Promise
<any
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:202
score()
score(
opts
):Promise
<number
>
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum()
and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y
, disregarding the input features, would get a \(R^2\) score of 0.0.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike [] | Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted) , where n_samples_fitted is the number of samples used in the fitting for the estimator. |
opts.y ? | ArrayLike | True values for X . |
Returns Promise
<number
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:240
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/linear_model/OrthogonalMatchingPursuit.ts:290