Class: PolynomialCountSketch
Polynomial kernel approximation via Tensor Sketch.
Implements Tensor Sketch, which approximates the feature map of the polynomial kernel:
Constructors
new PolynomialCountSketch()
new PolynomialCountSketch(
opts?):PolynomialCountSketch
Parameters
| Parameter | Type | Description |
|---|---|---|
opts? | object | - |
opts.coef0? | number | Constant term of the polynomial kernel whose feature map will be approximated. |
opts.degree? | number | Degree of the polynomial kernel whose feature map will be approximated. |
opts.gamma? | number | Parameter of the polynomial kernel whose feature map will be approximated. |
opts.n_components? | number | Dimensionality of the output feature space. Usually, n_components should be greater than the number of features in input samples in order to achieve good performance. The optimal score / run time balance is typically achieved around n_components = 10 * n_features, but this depends on the specific dataset being used. |
opts.random_state? | number | Determines random number generation for indexHash and bitHash initialization. Pass an int for reproducible results across multiple function calls. See Glossary. |
Returns PolynomialCountSketch
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:23
Properties
| Property | Type | Default value | Defined in |
|---|---|---|---|
_isDisposed | boolean | false | generated/kernel_approximation/PolynomialCountSketch.ts:21 |
_isInitialized | boolean | false | generated/kernel_approximation/PolynomialCountSketch.ts:20 |
_py | PythonBridge | undefined | generated/kernel_approximation/PolynomialCountSketch.ts:19 |
id | string | undefined | generated/kernel_approximation/PolynomialCountSketch.ts:16 |
opts | any | undefined | generated/kernel_approximation/PolynomialCountSketch.ts:17 |
Accessors
bitHash_
Get Signature
get bitHash_():
Promise<ArrayLike[]>
Array with random entries in {+1, -1}, used to represent the 2-wise independent hash functions for Count Sketch computation.
Returns Promise<ArrayLike[]>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:400
feature_names_in_
Get Signature
get feature_names_in_():
Promise<ArrayLike>
Names of features seen during fit. Defined only when X has feature names that are all strings.
Returns Promise<ArrayLike>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:454
indexHash_
Get Signature
get indexHash_():
Promise<ArrayLike[]>
Array of indexes in range \0, n_components) used to represent the 2-wise independent hash functions for Count Sketch computation.
Returns Promise<[ArrayLike[]>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:373
n_features_in_
Get Signature
get n_features_in_():
Promise<number>
Number of features seen during fit.
Returns Promise<number>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:427
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge):void
Parameters
| Parameter | Type |
|---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:61
Methods
dispose()
dispose():
Promise<void>
Disposes of the underlying Python resources.
Once dispose() is called, the instance is no longer usable.
Returns Promise<void>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:117
fit()
fit(
opts):Promise<any>
Fit the model with X.
Initializes the internal variables. The method needs no information about the distribution of data, so we only care about n_features in X.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike | Training data, where n_samples is the number of samples and n_features is the number of features. |
opts.y? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns Promise<any>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:136
fit_transform()
fit_transform(
opts):Promise<any[]>
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.fit_params? | any | Additional fit parameters. |
opts.X? | ArrayLike[] | Input samples. |
opts.y? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns Promise<any[]>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:177
get_feature_names_out()
get_feature_names_out(
opts):Promise<any>
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: \["class_name0", "class_name1", "class_name2"\].
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.input_features? | any | Only used to validate feature names with the names seen in fit. |
Returns Promise<any>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:225
get_metadata_routing()
get_metadata_routing(
opts):Promise<any>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns Promise<any>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:263
init()
init(
py):Promise<void>
Initializes the underlying Python resources.
This instance is not usable until the Promise returned by init() resolves.
Parameters
| Parameter | Type |
|---|---|
py | PythonBridge |
Returns Promise<void>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:74
set_output()
set_output(
opts):Promise<any>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.transform? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform. |
Returns Promise<any>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:301
transform()
transform(
opts):Promise<ArrayLike>
Generate the feature map approximation for X.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike | New data, where n_samples is the number of samples and n_features is the number of features. |
Returns Promise<ArrayLike>
Defined in generated/kernel_approximation/PolynomialCountSketch.ts:337