Class: PredictionErrorDisplay
Visualization of the prediction error of a regression model.
This tool can display “residuals vs predicted” or “actual vs predicted” using scatter plots to qualitatively assess the behavior of a regressor, preferably on held-out data points.
See the details in the docstrings of from_estimator
or from_predictions
to create a visualizer. All parameters are stored as attributes.
For general information regarding scikit-learn
visualization tools, read more in the Visualization Guide. For details regarding interpreting these plots, refer to the Model Evaluation Guide.
Constructors
new PredictionErrorDisplay()
new PredictionErrorDisplay(
opts
?):PredictionErrorDisplay
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.y_pred ? | ArrayLike | Prediction values. |
opts.y_true ? | ArrayLike | True values. |
Returns PredictionErrorDisplay
Defined in generated/metrics/PredictionErrorDisplay.ts:27
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/metrics/PredictionErrorDisplay.ts:25 |
_isInitialized | boolean | false | generated/metrics/PredictionErrorDisplay.ts:24 |
_py | PythonBridge | undefined | generated/metrics/PredictionErrorDisplay.ts:23 |
id | string | undefined | generated/metrics/PredictionErrorDisplay.ts:20 |
opts | any | undefined | generated/metrics/PredictionErrorDisplay.ts:21 |
Accessors
ax_
Get Signature
get ax_():
Promise
<any
>
Axes with the different matplotlib axis.
Returns Promise
<any
>
Defined in generated/metrics/PredictionErrorDisplay.ts:408
errors_lines_
Get Signature
get errors_lines_():
Promise
<any
>
Residual lines. If with_errors=False
, then it is set to undefined
.
Returns Promise
<any
>
Defined in generated/metrics/PredictionErrorDisplay.ts:354
figure_
Get Signature
get figure_():
Promise
<any
>
Figure containing the scatter and lines.
Returns Promise
<any
>
Defined in generated/metrics/PredictionErrorDisplay.ts:435
line_
Get Signature
get line_():
Promise
<any
>
Optimal line representing y_true \== y_pred
. Therefore, it is a diagonal line for kind="predictions"
and a horizontal line for kind="residuals"
.
Returns Promise
<any
>
Defined in generated/metrics/PredictionErrorDisplay.ts:327
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/metrics/PredictionErrorDisplay.ts:42
scatter_
Get Signature
get scatter_():
Promise
<any
>
Scatter data points.
Returns Promise
<any
>
Defined in generated/metrics/PredictionErrorDisplay.ts:381
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/metrics/PredictionErrorDisplay.ts:98
from_estimator()
from_estimator(
opts
):Promise
<any
>
Plot the prediction error given a regressor and some data.
For general information regarding scikit-learn
visualization tools, read more in the Visualization Guide. For details regarding interpreting these plots, refer to the Model Evaluation Guide.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.ax ? | any | Axes object to plot on. If undefined , a new figure and axes is created. |
opts.estimator ? | any | Fitted regressor or a fitted Pipeline in which the last estimator is a regressor. |
opts.kind ? | "actual_vs_predicted" | "residual_vs_predicted" | The type of plot to draw: |
opts.line_kwargs ? | any | Dictionary with keyword passed to the matplotlib.pyplot.plot call to draw the optimal line. |
opts.random_state ? | number | Controls the randomness when subsample is not undefined . See Glossary for details. |
opts.scatter_kwargs ? | any | Dictionary with keywords passed to the matplotlib.pyplot.scatter call. |
opts.subsample ? | number | Sampling the samples to be shown on the scatter plot. If float , it should be between 0 and 1 and represents the proportion of the original dataset. If int , it represents the number of samples display on the scatter plot. If undefined , no subsampling will be applied. by default, 1000 samples or less will be displayed. |
opts.X ? | ArrayLike | Input values. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<any
>
Defined in generated/metrics/PredictionErrorDisplay.ts:117
from_predictions()
from_predictions(
opts
):Promise
<any
>
Plot the prediction error given the true and predicted targets.
For general information regarding scikit-learn
visualization tools, read more in the Visualization Guide. For details regarding interpreting these plots, refer to the Model Evaluation Guide.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.ax ? | any | Axes object to plot on. If undefined , a new figure and axes is created. |
opts.kind ? | "actual_vs_predicted" | "residual_vs_predicted" | The type of plot to draw: |
opts.line_kwargs ? | any | Dictionary with keyword passed to the matplotlib.pyplot.plot call to draw the optimal line. |
opts.random_state ? | number | Controls the randomness when subsample is not undefined . See Glossary for details. |
opts.scatter_kwargs ? | any | Dictionary with keywords passed to the matplotlib.pyplot.scatter call. |
opts.subsample ? | number | Sampling the samples to be shown on the scatter plot. If float , it should be between 0 and 1 and represents the proportion of the original dataset. If int , it represents the number of samples display on the scatter plot. If undefined , no subsampling will be applied. by default, 1000 samples or less will be displayed. |
opts.y_pred ? | ArrayLike | Predicted target values. |
opts.y_true ? | ArrayLike | True target values. |
Returns Promise
<any
>
Defined in generated/metrics/PredictionErrorDisplay.ts:199
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/metrics/PredictionErrorDisplay.ts:55
plot()
plot(
opts
):Promise
<any
>
Plot visualization.
Extra keyword arguments will be passed to matplotlib’s plot
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.ax ? | any | Axes object to plot on. If undefined , a new figure and axes is created. |
opts.kind ? | "actual_vs_predicted" | "residual_vs_predicted" | The type of plot to draw: |
opts.line_kwargs ? | any | Dictionary with keyword passed to the matplotlib.pyplot.plot call to draw the optimal line. |
opts.scatter_kwargs ? | any | Dictionary with keywords passed to the matplotlib.pyplot.scatter call. |
Returns Promise
<any
>