FunctionTransformer
Constructs a transformer from an arbitrary callable.
A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function object and returns the result of this function. This is useful for stateless transformations such as taking the log of frequencies, doing custom scaling, etc.
Note: If a lambda is used as the function, then the resulting transformer will not be pickleable.
Python Reference (opens in a new tab)
Constructors
constructor()
Signature
new FunctionTransformer(opts?: object): FunctionTransformer;
Parameters
Name | Type | Description |
---|---|---|
opts? | object | - |
opts.accept_sparse? | boolean | Indicate that func accepts a sparse matrix as input. If validate is false , this has no effect. Otherwise, if accept_sparse is false, sparse matrix inputs will cause an exception to be raised. Default Value false |
opts.check_inverse? | boolean | Whether to check that or func followed by inverse\_func leads to the original inputs. It can be used for a sanity check, raising a warning when the condition is not fulfilled. Default Value true |
opts.feature_names_out? | "one-to-one" | Determines the list of feature names that will be returned by the get\_feature\_names\_out method. If it is ‘one-to-one’, then the output feature names will be equal to the input feature names. If it is a callable, then it must take two positional arguments: this FunctionTransformer (self ) and an array-like of input feature names (input\_features ). It must return an array-like of output feature names. The get\_feature\_names\_out method is only defined if feature\_names\_out is not undefined . See get\_feature\_names\_out for more details. |
opts.func? | any | The callable to use for the transformation. This will be passed the same arguments as transform, with args and kwargs forwarded. If func is undefined , then func will be the identity function. |
opts.inv_kw_args? | any | Dictionary of additional keyword arguments to pass to inverse_func. |
opts.inverse_func? | any | The callable to use for the inverse transformation. This will be passed the same arguments as inverse transform, with args and kwargs forwarded. If inverse_func is undefined , then inverse_func will be the identity function. |
opts.kw_args? | any | Dictionary of additional keyword arguments to pass to func. |
opts.validate? | boolean | Indicate that the input X array should be checked before calling func . The possibilities are: Default Value false |
Returns
Defined in: generated/preprocessing/FunctionTransformer.ts:25 (opens in a new tab)
Methods
dispose()
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Signature
dispose(): Promise<void>;
Returns
Promise
<void
>
Defined in: generated/preprocessing/FunctionTransformer.ts:145 (opens in a new tab)
fit()
Fit transformer by checking X.
If validate
is true
, X
will be checked.
Signature
fit(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Input array. |
opts.y? | any | Not used, present here for API consistency by convention. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/FunctionTransformer.ts:164 (opens in a new tab)
fit_transform()
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit\_params
and returns a transformed version of X
.
Signature
fit_transform(opts: object): Promise<any[]>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | Input samples. |
opts.fit_params? | any | Additional fit parameters. |
opts.y? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns
Promise
<any
[]>
Defined in: generated/preprocessing/FunctionTransformer.ts:206 (opens in a new tab)
get_feature_names_out()
Get output feature names for transformation.
This method is only defined if feature\_names\_out
is not undefined
.
Signature
get_feature_names_out(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.input_features? | any | Input feature names. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/FunctionTransformer.ts:259 (opens in a new tab)
get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Signature
get_metadata_routing(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/FunctionTransformer.ts:299 (opens in a new tab)
init()
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Signature
init(py: PythonBridge): Promise<void>;
Parameters
Name | Type |
---|---|
py | PythonBridge |
Returns
Promise
<void
>
Defined in: generated/preprocessing/FunctionTransformer.ts:91 (opens in a new tab)
inverse_transform()
Transform X using the inverse function.
Signature
inverse_transform(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Input array. |
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/FunctionTransformer.ts:337 (opens in a new tab)
set_output()
Set output container.
See Introducing the set_output API for an example on how to use the API.
Signature
set_output(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.transform? | "default" | "pandas" | Configure output of transform and fit\_transform . |
Returns
Promise
<any
>
Defined in: generated/preprocessing/FunctionTransformer.ts:377 (opens in a new tab)
transform()
Transform X using the forward function.
Signature
transform(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Input array. |
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/FunctionTransformer.ts:414 (opens in a new tab)
Properties
_isDisposed
boolean
=false
Defined in: generated/preprocessing/FunctionTransformer.ts:23 (opens in a new tab)
_isInitialized
boolean
=false
Defined in: generated/preprocessing/FunctionTransformer.ts:22 (opens in a new tab)
_py
PythonBridge
Defined in: generated/preprocessing/FunctionTransformer.ts:21 (opens in a new tab)
id
string
Defined in: generated/preprocessing/FunctionTransformer.ts:18 (opens in a new tab)
opts
any
Defined in: generated/preprocessing/FunctionTransformer.ts:19 (opens in a new tab)
Accessors
feature_names_in_
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Signature
feature_names_in_(): Promise<ArrayLike>;
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/FunctionTransformer.ts:476 (opens in a new tab)
n_features_in_
Number of features seen during fit.
Signature
n_features_in_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/preprocessing/FunctionTransformer.ts:449 (opens in a new tab)
py
Signature
py(): PythonBridge;
Returns
PythonBridge
Defined in: generated/preprocessing/FunctionTransformer.ts:78 (opens in a new tab)
Signature
py(pythonBridge: PythonBridge): void;
Parameters
Name | Type |
---|---|
pythonBridge | PythonBridge |
Returns
void
Defined in: generated/preprocessing/FunctionTransformer.ts:82 (opens in a new tab)