DocumentationClassesFixedThresholdClassifier

Class: FixedThresholdClassifier

Binary classifier that manually sets the decision threshold.

This classifier allows to change the default decision threshold used for converting posterior probability estimates (i.e. output of predict_proba) or decision scores (i.e. output of decision_function) into a class label.

Here, the threshold is not optimized and is set to a constant value.

Read more in the User Guide.

Python Reference

Constructors

new FixedThresholdClassifier()

new FixedThresholdClassifier(opts?): FixedThresholdClassifier

Parameters

ParameterTypeDescription
opts?object-
opts.estimator?anyThe binary classifier, fitted or not, for which we want to optimize the decision threshold used during predict.
opts.pos_label?string | number | booleanThe label of the positive class. Used to process the output of the response_method method. When pos_label=None, if y_true is in {-1, 1} or {0, 1}, pos_label is set to 1, otherwise an error will be raised.
opts.response_method?"auto" | "predict_proba" | "decision_function"Methods by the classifier estimator corresponding to the decision function for which we want to find a threshold. It can be:
opts.threshold?number | "auto"The decision threshold to use when converting posterior probability estimates (i.e. output of predict_proba) or decision scores (i.e. output of decision_function) into a class label. When "auto", the threshold is set to 0.5 if predict_proba is used as response_method, otherwise it is set to 0 (i.e. the default threshold for decision_function).

Returns FixedThresholdClassifier

Defined in generated/model_selection/FixedThresholdClassifier.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/model_selection/FixedThresholdClassifier.ts:25
_isInitializedbooleanfalsegenerated/model_selection/FixedThresholdClassifier.ts:24
_pyPythonBridgeundefinedgenerated/model_selection/FixedThresholdClassifier.ts:23
idstringundefinedgenerated/model_selection/FixedThresholdClassifier.ts:20
optsanyundefinedgenerated/model_selection/FixedThresholdClassifier.ts:21

Accessors

estimator_

Get Signature

get estimator_(): Promise<any>

The fitted classifier used when predicting.

Returns Promise<any>

Defined in generated/model_selection/FixedThresholdClassifier.ts:443


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Only defined if the underlying estimator exposes such an attribute when fit.

Returns Promise<ArrayLike>

Defined in generated/model_selection/FixedThresholdClassifier.ts:497


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit. Only defined if the underlying estimator exposes such an attribute when fit.

Returns Promise<number>

Defined in generated/model_selection/FixedThresholdClassifier.ts:470


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/model_selection/FixedThresholdClassifier.ts:56

Methods

decision_function()

decision_function(opts): Promise<ArrayLike>

Decision function for samples in X using the fitted estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<ArrayLike>

Defined in generated/model_selection/FixedThresholdClassifier.ts:129


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/model_selection/FixedThresholdClassifier.ts:112


fit()

fit(opts): Promise<any>

Fit the classifier.

Parameters

ParameterTypeDescription
optsobject-
opts.params?anyParameters to pass to the fit method of the underlying classifier.
opts.X?ArrayLikeTraining data.
opts.y?ArrayLikeTarget values.

Returns Promise<any>

Defined in generated/model_selection/FixedThresholdClassifier.ts:165


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRouter encapsulating routing information.

Returns Promise<any>

Defined in generated/model_selection/FixedThresholdClassifier.ts:211


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/model_selection/FixedThresholdClassifier.ts:69


predict()

predict(opts): Promise<ArrayLike>

Predict the target of new samples.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeThe samples, as accepted by estimator.predict.

Returns Promise<ArrayLike>

Defined in generated/model_selection/FixedThresholdClassifier.ts:247


predict_log_proba()

predict_log_proba(opts): Promise<ArrayLike[]>

Predict logarithm class probabilities for X using the fitted estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<ArrayLike[]>

Defined in generated/model_selection/FixedThresholdClassifier.ts:283


predict_proba()

predict_proba(opts): Promise<ArrayLike[]>

Predict class probabilities for X using the fitted estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<ArrayLike[]>

Defined in generated/model_selection/FixedThresholdClassifier.ts:319


score()

score(opts): Promise<number>

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples.
opts.y?ArrayLikeTrue labels for X.

Returns Promise<number>

Defined in generated/model_selection/FixedThresholdClassifier.ts:357


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/model_selection/FixedThresholdClassifier.ts:407