Class: RandomTreesEmbedding
An ensemble of totally random trees.
An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest.
The dimensionality of the resulting representation is n_out <= n_estimators \* max_leaf_nodes
. If max_leaf_nodes \== None
, the number of leaf nodes is at most n_estimators \* 2 \*\* max_depth
.
Read more in the User Guide.
Constructors
new RandomTreesEmbedding()
new RandomTreesEmbedding(
opts
?):RandomTreesEmbedding
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.max_depth ? | number | The maximum depth of each tree. If undefined , then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. |
opts.max_leaf_nodes ? | number | Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If undefined then unlimited number of leaf nodes. |
opts.min_impurity_decrease ? | number | A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following: |
opts.min_samples_leaf ? | number | The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least min_samples_leaf training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression. |
opts.min_samples_split ? | number | The minimum number of samples required to split an internal node: |
opts.min_weight_fraction_leaf ? | number | The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. |
opts.n_estimators ? | number | Number of trees in the forest. |
opts.n_jobs ? | number | The number of jobs to run in parallel. fit , transform , decision_path and apply are all parallelized over the trees. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details. |
opts.random_state ? | number | Controls the generation of the random y used to fit the trees and the draw of the splits for each feature at the trees’ nodes. See Glossary for details. |
opts.sparse_output ? | boolean | Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. |
opts.verbose ? | number | Controls the verbosity when fitting and predicting. |
opts.warm_start ? | boolean | When set to true , reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See Glossary and Fitting additional trees for details. |
Returns RandomTreesEmbedding
Defined in generated/ensemble/RandomTreesEmbedding.ts:27
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/ensemble/RandomTreesEmbedding.ts:25 |
_isInitialized | boolean | false | generated/ensemble/RandomTreesEmbedding.ts:24 |
_py | PythonBridge | undefined | generated/ensemble/RandomTreesEmbedding.ts:23 |
id | string | undefined | generated/ensemble/RandomTreesEmbedding.ts:20 |
opts | any | undefined | generated/ensemble/RandomTreesEmbedding.ts:21 |
Accessors
estimator_
Get Signature
get estimator_():
Promise
<any
>
The child estimator template used to create the collection of fitted sub-estimators.
Returns Promise
<any
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:533
estimators_
Get Signature
get estimators_():
Promise
<any
>
The collection of fitted sub-estimators.
Returns Promise
<any
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:560
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:614
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:587
n_outputs_
Get Signature
get n_outputs_():
Promise
<number
>
The number of outputs when fit
is performed.
Returns Promise
<number
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:641
one_hot_encoder_
Get Signature
get one_hot_encoder_():
Promise
<any
>
One-hot encoder used to create the sparse embedding.
Returns Promise
<any
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:668
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/ensemble/RandomTreesEmbedding.ts:112
Methods
apply()
apply(
opts
):Promise
<ArrayLike
[]>
Apply trees in the forest to X, return leaf indices.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | The input samples. Internally, its dtype will be converted to dtype=np.float32 . If a sparse matrix is provided, it will be converted into a sparse csr_matrix . |
Returns Promise
<ArrayLike
[]>
Defined in generated/ensemble/RandomTreesEmbedding.ts:185
decision_path()
decision_path(
opts
):Promise
<any
[]>
Return the decision path in the forest.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | The input samples. Internally, its dtype will be converted to dtype=np.float32 . If a sparse matrix is provided, it will be converted into a sparse csr_matrix . |
Returns Promise
<any
[]>
Defined in generated/ensemble/RandomTreesEmbedding.ts:219
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:168
fit()
fit(
opts
):Promise
<any
>
Fit estimator.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. If undefined , then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. |
opts.X ? | ArrayLike | The input samples. Use dtype=np.float32 for maximum efficiency. Sparse matrices are also supported, use sparse csc_matrix for maximum efficiency. |
opts.y ? | any | Not used, present for API consistency by convention. |
Returns Promise
<any
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:255
fit_transform()
fit_transform(
opts
):Promise
<any
[]>
Fit estimator and transform dataset.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. If undefined , then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. |
opts.X ? | ArrayLike | Input data used to build forests. Use dtype=np.float32 for maximum efficiency. |
opts.y ? | any | Not used, present for API consistency by convention. |
Returns Promise
<any
[]>
Defined in generated/ensemble/RandomTreesEmbedding.ts:299
get_feature_names_out()
get_feature_names_out(
opts
):Promise
<any
>
Get output feature names for transformation.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.input_features ? | any | Only used to validate feature names with the names seen in fit . |
Returns Promise
<any
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:345
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:383
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:125
set_fit_request()
set_fit_request(
opts
):Promise
<any
>
Request metadata passed to the fit
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in fit . |
Returns Promise
<any
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:423
set_output()
set_output(
opts
):Promise
<any
>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.transform ? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform . |
Returns Promise
<any
>
Defined in generated/ensemble/RandomTreesEmbedding.ts:461
transform()
transform(
opts
):Promise
<any
[]>
Transform dataset.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Input data to be transformed. Use dtype=np.float32 for maximum efficiency. Sparse matrices are also supported, use sparse csr_matrix for maximum efficiency. |
Returns Promise
<any
[]>