Class: TargetEncoder

Target Encoder for regression and classification targets.

Each category is encoded based on a shrunk estimate of the average target values for observations belonging to the category. The encoding scheme mixes the global target mean with the target mean conditioned on the value of the category (see [MIC]).

When the target type is “multiclass”, encodings are based on the conditional probability estimate for each class. The target is first binarized using the “one-vs-all” scheme via LabelBinarizer, then the average target value for each class and each category is used for encoding, resulting in n_features * n_classes encoded output features.

TargetEncoder considers missing values, such as np.nan or undefined, as another category and encodes them like any other category. Categories that are not seen during fit are encoded with the target mean, i.e. target_mean_.

For a demo on the importance of the TargetEncoder internal cross-fitting, see Target Encoder’s Internal Cross fitting. For a comparison of different encoders, refer to Comparing Target Encoder with Other Encoders. Read more in the User Guide.

Python Reference

Constructors

new TargetEncoder()

new TargetEncoder(opts?): TargetEncoder

Parameters

ParameterTypeDescription
opts?object-
opts.categories?"auto"Categories (unique values) per feature:
opts.cv?numberDetermines the number of folds in the cross fitting strategy used in fit_transform. For classification targets, StratifiedKFold is used and for continuous targets, KFold is used.
opts.random_state?numberWhen shuffle is true, random_state affects the ordering of the indices, which controls the randomness of each fold. Otherwise, this parameter has no effect. Pass an int for reproducible output across multiple function calls. See Glossary.
opts.shuffle?booleanWhether to shuffle the data in fit_transform before splitting into folds. Note that the samples within each split will not be shuffled.
opts.smooth?number | "auto"The amount of mixing of the target mean conditioned on the value of the category with the global target mean. A larger smooth value will put more weight on the global target mean. If "auto", then smooth is set to an empirical Bayes estimate.
opts.target_type?"auto" | "binary" | "continuous" | "multiclass"Type of target.

Returns TargetEncoder

Defined in generated/preprocessing/TargetEncoder.ts:29

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/preprocessing/TargetEncoder.ts:27
_isInitializedbooleanfalsegenerated/preprocessing/TargetEncoder.ts:26
_pyPythonBridgeundefinedgenerated/preprocessing/TargetEncoder.ts:25
idstringundefinedgenerated/preprocessing/TargetEncoder.ts:22
optsanyundefinedgenerated/preprocessing/TargetEncoder.ts:23

Accessors

categories_

Get Signature

get categories_(): Promise<any>

The categories of each input feature determined during fitting or specified in categories (in order of the features in X and corresponding with the output of transform).

Returns Promise<any>

Defined in generated/preprocessing/TargetEncoder.ts:378


classes_

Get Signature

get classes_(): Promise<ArrayLike>

If target_type_ is ‘binary’ or ‘multiclass’, holds the label for each class, otherwise undefined.

Returns Promise<ArrayLike>

Defined in generated/preprocessing/TargetEncoder.ts:503


encodings_

Get Signature

get encodings_(): Promise<any[]>

Encodings learnt on all of X. For feature i, encodings_\[i\] are the encodings matching the categories listed in categories_\[i\]. When target_type_ is “multiclass”, the encoding for feature i and class j is stored in encodings_\[j + (i \* len(classes_))\]. E.g., for 2 features (f) and 3 classes (c), encodings are ordered: f0_c0, f0_c1, f0_c2, f1_c0, f1_c1, f1_c2,

Returns Promise<any[]>

Defined in generated/preprocessing/TargetEncoder.ts:353


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/preprocessing/TargetEncoder.ts:478


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/preprocessing/TargetEncoder.ts:453


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/preprocessing/TargetEncoder.ts:74


target_mean_

Get Signature

get target_mean_(): Promise<number>

The overall mean of the target. This value is only used in transform to encode categories.

Returns Promise<number>

Defined in generated/preprocessing/TargetEncoder.ts:428


target_type_

Get Signature

get target_type_(): Promise<string>

Type of target.

Returns Promise<string>

Defined in generated/preprocessing/TargetEncoder.ts:403

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/preprocessing/TargetEncoder.ts:126


fit()

fit(opts): Promise<any>

Fit the TargetEncoder to X and y.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The data to determine the categories of each feature.
opts.y?ArrayLikeThe target data used to encode the categories.

Returns Promise<any>

Defined in generated/preprocessing/TargetEncoder.ts:143


fit_transform()

fit_transform(opts): Promise<ArrayLike[]>

Fit TargetEncoder and transform X with the target encoding.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The data to determine the categories of each feature.
opts.y?ArrayLikeThe target data used to encode the categories.

Returns Promise<ArrayLike[]>

Defined in generated/preprocessing/TargetEncoder.ts:180


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Get output feature names for transformation.

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyNot used, present here for API consistency by convention.

Returns Promise<any>

Defined in generated/preprocessing/TargetEncoder.ts:217


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/preprocessing/TargetEncoder.ts:253


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/preprocessing/TargetEncoder.ts:87


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/preprocessing/TargetEncoder.ts:289


transform()

transform(opts): Promise<ArrayLike[]>

Transform X with the target encoding.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The data to determine the categories of each feature.

Returns Promise<ArrayLike[]>

Defined in generated/preprocessing/TargetEncoder.ts:321