Class: OrdinalEncoder
Encode categorical features as an integer array.
The input to this transformer should be an array-like of integers or strings, denoting the values taken on by categorical (discrete) features. The features are converted to ordinal integers. This results in a single column of integers (0 to n_categories - 1) per feature.
Read more in the User Guide. For a comparison of different encoders, refer to: Comparing Target Encoder with Other Encoders.
Constructors
new OrdinalEncoder()
new OrdinalEncoder(
opts?):OrdinalEncoder
Parameters
| Parameter | Type | Description |
|---|---|---|
opts? | object | - |
opts.categories? | "auto" | Categories (unique values) per feature: |
opts.dtype? | any | Desired dtype of output. |
opts.encoded_missing_value? | number | Encoded value of missing categories. If set to np.nan, then the dtype parameter must be a float dtype. |
opts.handle_unknown? | "error" | "use_encoded_value" | When set to ‘error’ an error will be raised in case an unknown categorical feature is present during transform. When set to ‘use_encoded_value’, the encoded value of unknown categories will be set to the value given for the parameter unknown_value. In inverse_transform, an unknown category will be denoted as undefined. |
opts.max_categories? | number | Specifies an upper limit to the number of output categories for each input feature when considering infrequent categories. If there are infrequent categories, max_categories includes the category representing the infrequent categories along with the frequent categories. If undefined, there is no limit to the number of output features. max_categories do not take into account missing or unknown categories. Setting unknown_value or encoded_missing_value to an integer will increase the number of unique integer codes by one each. This can result in up to max_categories + 2 integer codes. |
opts.min_frequency? | number | Specifies the minimum frequency below which a category will be considered infrequent. |
opts.unknown_value? | number | When the parameter handle_unknown is set to ‘use_encoded_value’, this parameter is required and will set the encoded value of unknown categories. It has to be distinct from the values used to encode any of the categories in fit. If set to np.nan, the dtype parameter must be a float dtype. |
Returns OrdinalEncoder
Defined in generated/preprocessing/OrdinalEncoder.ts:25
Properties
| Property | Type | Default value | Defined in |
|---|---|---|---|
_isDisposed | boolean | false | generated/preprocessing/OrdinalEncoder.ts:23 |
_isInitialized | boolean | false | generated/preprocessing/OrdinalEncoder.ts:22 |
_py | PythonBridge | undefined | generated/preprocessing/OrdinalEncoder.ts:21 |
id | string | undefined | generated/preprocessing/OrdinalEncoder.ts:18 |
opts | any | undefined | generated/preprocessing/OrdinalEncoder.ts:19 |
Accessors
categories_
Get Signature
get categories_():
Promise<any>
The categories of each feature determined during fit (in order of the features in X and corresponding with the output of transform). This does not include categories that weren’t seen during fit.
Returns Promise<any>
Defined in generated/preprocessing/OrdinalEncoder.ts:391
feature_names_in_
Get Signature
get feature_names_in_():
Promise<ArrayLike>
Names of features seen during fit. Defined only when X has feature names that are all strings.
Returns Promise<ArrayLike>
Defined in generated/preprocessing/OrdinalEncoder.ts:441
n_features_in_
Get Signature
get n_features_in_():
Promise<number>
Number of features seen during fit.
Returns Promise<number>
Defined in generated/preprocessing/OrdinalEncoder.ts:416
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge):void
Parameters
| Parameter | Type |
|---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/preprocessing/OrdinalEncoder.ts:71
Methods
dispose()
dispose():
Promise<void>
Disposes of the underlying Python resources.
Once dispose() is called, the instance is no longer usable.
Returns Promise<void>
Defined in generated/preprocessing/OrdinalEncoder.ts:123
fit()
fit(
opts):Promise<any>
Fit the OrdinalEncoder to X.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike[] | The data to determine the categories of each feature. |
opts.y? | any | Ignored. This parameter exists only for compatibility with Pipeline. |
Returns Promise<any>
Defined in generated/preprocessing/OrdinalEncoder.ts:140
fit_transform()
fit_transform(
opts):Promise<any[]>
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.fit_params? | any | Additional fit parameters. |
opts.X? | ArrayLike[] | Input samples. |
opts.y? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns Promise<any[]>
Defined in generated/preprocessing/OrdinalEncoder.ts:179
get_feature_names_out()
get_feature_names_out(
opts):Promise<any>
Get output feature names for transformation.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.input_features? | any | Input features. |
Returns Promise<any>
Defined in generated/preprocessing/OrdinalEncoder.ts:221
get_metadata_routing()
get_metadata_routing(
opts):Promise<any>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns Promise<any>
Defined in generated/preprocessing/OrdinalEncoder.ts:257
init()
init(
py):Promise<void>
Initializes the underlying Python resources.
This instance is not usable until the Promise returned by init() resolves.
Parameters
| Parameter | Type |
|---|---|
py | PythonBridge |
Returns Promise<void>
Defined in generated/preprocessing/OrdinalEncoder.ts:84
inverse_transform()
inverse_transform(
opts):Promise<ArrayLike[]>
Convert the data back to the original representation.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike[] | The transformed data. |
Returns Promise<ArrayLike[]>
Defined in generated/preprocessing/OrdinalEncoder.ts:291
set_output()
set_output(
opts):Promise<any>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.transform? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform. |
Returns Promise<any>
Defined in generated/preprocessing/OrdinalEncoder.ts:327
transform()
transform(
opts):Promise<ArrayLike[]>
Transform X to ordinal codes.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike[] | The data to encode. |
Returns Promise<ArrayLike[]>