DocumentationClassesLabelBinarizer

Class: LabelBinarizer

Binarize labels in a one-vs-all fashion.

Several regression and binary classification algorithms are available in scikit-learn. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.

At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method.

At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method.

Read more in the User Guide.

Python Reference

Constructors

new LabelBinarizer()

new LabelBinarizer(opts?): LabelBinarizer

Parameters

ParameterTypeDescription
opts?object-
opts.neg_label?numberValue with which negative labels must be encoded.
opts.pos_label?numberValue with which positive labels must be encoded.
opts.sparse_output?booleanTrue if the returned array from transform is desired to be in sparse CSR format.

Returns LabelBinarizer

Defined in generated/preprocessing/LabelBinarizer.ts:29

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/preprocessing/LabelBinarizer.ts:27
_isInitializedbooleanfalsegenerated/preprocessing/LabelBinarizer.ts:26
_pyPythonBridgeundefinedgenerated/preprocessing/LabelBinarizer.ts:25
idstringundefinedgenerated/preprocessing/LabelBinarizer.ts:22
optsanyundefinedgenerated/preprocessing/LabelBinarizer.ts:23

Accessors

classes_

Get Signature

get classes_(): Promise<ArrayLike>

Holds the label for each class.

Returns Promise<ArrayLike>

Defined in generated/preprocessing/LabelBinarizer.ts:375


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/preprocessing/LabelBinarizer.ts:55


sparse_input_

Get Signature

get sparse_input_(): Promise<boolean>

false otherwise.

Returns Promise<boolean>

Defined in generated/preprocessing/LabelBinarizer.ts:425


y_type_

Get Signature

get y_type_(): Promise<string>

Represents the type of the target data as evaluated by type_of_target. Possible type are ‘continuous’, ‘continuous-multioutput’, ‘binary’, ‘multiclass’, ‘multiclass-multioutput’, ‘multilabel-indicator’, and ‘unknown’.

Returns Promise<string>

Defined in generated/preprocessing/LabelBinarizer.ts:400

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/preprocessing/LabelBinarizer.ts:107


fit()

fit(opts): Promise<any>

Fit label binarizer.

Parameters

ParameterTypeDescription
optsobject-
opts.y?ArrayLikeTarget values. The 2-d matrix should only contain 0 and 1, represents multilabel classification.

Returns Promise<any>

Defined in generated/preprocessing/LabelBinarizer.ts:124


fit_transform()

fit_transform(opts): Promise<ArrayLike>

Fit label binarizer/transform multi-class labels to binary labels.

The output of transform is sometimes referred to as the 1-of-K coding scheme.

Parameters

ParameterTypeDescription
optsobject-
opts.y?anyTarget values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL.

Returns Promise<ArrayLike>

Defined in generated/preprocessing/LabelBinarizer.ts:158


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/preprocessing/LabelBinarizer.ts:192


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/preprocessing/LabelBinarizer.ts:68


inverse_transform()

inverse_transform(opts): Promise<any>

Transform binary labels back to multi-class labels.

Parameters

ParameterTypeDescription
optsobject-
opts.threshold?numberThreshold used in the binary and multi-label cases. Use 0 when Y contains the output of decision_function (classifier). Use 0.5 when Y contains the output of predict_proba. If undefined, the threshold is assumed to be half way between neg_label and pos_label.
opts.Y?ArrayLikeTarget values. All sparse matrices are converted to CSR before inverse transformation.

Returns Promise<any>

Defined in generated/preprocessing/LabelBinarizer.ts:226


set_inverse_transform_request()

set_inverse_transform_request(opts): Promise<any>

Request metadata passed to the inverse_transform method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.threshold?string | booleanMetadata routing for threshold parameter in inverse_transform.

Returns Promise<any>

Defined in generated/preprocessing/LabelBinarizer.ts:273


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/preprocessing/LabelBinarizer.ts:309


transform()

transform(opts): Promise<ArrayLike>

Transform multi-class labels to binary labels.

The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme.

Parameters

ParameterTypeDescription
optsobject-
opts.y?anyTarget values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL.

Returns Promise<ArrayLike>

Defined in generated/preprocessing/LabelBinarizer.ts:343