Class: SpectralEmbedding
Spectral embedding for non-linear dimensionality reduction.
Forms an affinity matrix given by the specified function and applies spectral decomposition to the corresponding graph laplacian. The resulting transformation is given by the value of the eigenvectors for each data point.
Note : Laplacian Eigenmaps is the actual algorithm implemented here.
Read more in the User Guide.
Constructors
new SpectralEmbedding()
new SpectralEmbedding(
opts
?):SpectralEmbedding
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.affinity ? | "precomputed" | "rbf" | "nearest_neighbors" | "precomputed_nearest_neighbors" | ‘nearest_neighbors’ : construct the affinity matrix by computing a graph of nearest neighbors. |
opts.eigen_solver ? | "arpack" | "lobpcg" | "amg" | The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems. If undefined , then 'arpack' is used. |
opts.eigen_tol ? | number | Stopping criterion for eigendecomposition of the Laplacian matrix. If eigen_tol="auto" then the passed tolerance will depend on the eigen_solver : |
opts.gamma ? | number | Kernel coefficient for rbf kernel. If undefined , gamma will be set to 1/n_features. |
opts.n_components ? | number | The dimension of the projected subspace. |
opts.n_jobs ? | number | The number of parallel jobs to run. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details. |
opts.n_neighbors ? | number | Number of nearest neighbors for nearest_neighbors graph building. If undefined , n_neighbors will be set to max(n_samples/10, 1). |
opts.random_state ? | number | A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver \== 'amg' , and for the K-Means initialization. Use an int to make the results deterministic across calls (See Glossary). |
Returns SpectralEmbedding
Defined in generated/manifold/SpectralEmbedding.ts:27
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/manifold/SpectralEmbedding.ts:25 |
_isInitialized | boolean | false | generated/manifold/SpectralEmbedding.ts:24 |
_py | PythonBridge | undefined | generated/manifold/SpectralEmbedding.ts:23 |
id | string | undefined | generated/manifold/SpectralEmbedding.ts:20 |
opts | any | undefined | generated/manifold/SpectralEmbedding.ts:21 |
Accessors
affinity_matrix_
Get Signature
get affinity_matrix_():
Promise
<ArrayLike
[]>
Affinity_matrix constructed from samples or precomputed.
Returns Promise
<ArrayLike
[]>
Defined in generated/manifold/SpectralEmbedding.ts:302
embedding_
Get Signature
get embedding_():
Promise
<ArrayLike
[]>
Spectral embedding of the training matrix.
Returns Promise
<ArrayLike
[]>
Defined in generated/manifold/SpectralEmbedding.ts:275
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/manifold/SpectralEmbedding.ts:356
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/manifold/SpectralEmbedding.ts:329
n_neighbors_
Get Signature
get n_neighbors_():
Promise
<number
>
Number of nearest neighbors effectively used.
Returns Promise
<number
>
Defined in generated/manifold/SpectralEmbedding.ts:383
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/manifold/SpectralEmbedding.ts:82
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/manifold/SpectralEmbedding.ts:136
fit()
fit(
opts
):Promise
<any
>
Fit the model from data in X.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Training vector, where n_samples is the number of samples and n_features is the number of features. If affinity is “precomputed” X : {array-like, sparse matrix}, shape (n_samples, n_samples), Interpret X as precomputed adjacency graph computed from samples. |
opts.y ? | any | Not used, present for API consistency by convention. |
Returns Promise
<any
>
Defined in generated/manifold/SpectralEmbedding.ts:153
fit_transform()
fit_transform(
opts
):Promise
<ArrayLike
[]>
Fit the model from data in X and transform X.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Training vector, where n_samples is the number of samples and n_features is the number of features. If affinity is “precomputed” X : {array-like, sparse matrix} of shape (n_samples, n_samples), Interpret X as precomputed adjacency graph computed from samples. |
opts.y ? | any | Not used, present for API consistency by convention. |
Returns Promise
<ArrayLike
[]>
Defined in generated/manifold/SpectralEmbedding.ts:194
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/manifold/SpectralEmbedding.ts:239
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/manifold/SpectralEmbedding.ts:95