Class: GridSearchCV

Exhaustive search over specified parameter values for an estimator.

Important members are fit, predict.

GridSearchCV implements a “fit” and a “score” method. It also implements “score_samples”, “predict”, “predict_proba”, “decision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid.

Read more in the User Guide.

Python Reference

Constructors

new GridSearchCV()

new GridSearchCV(opts?): GridSearchCV

Parameters

ParameterTypeDescription
opts?object-
opts.cv?numberDetermines the cross-validation splitting strategy. Possible inputs for cv are:
opts.error_score?"raise"Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error.
opts.estimator?anyThis is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a score function, or scoring must be passed.
opts.n_jobs?numberNumber of jobs to run in parallel. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details.
opts.param_grid?anyDictionary with parameters names (str) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings.
opts.pre_dispatch?stringControls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:
opts.refit?booleanRefit an estimator using the best found parameters on the whole dataset. For multiple metric evaluation, this needs to be a str denoting the scorer that would be used to find the best parameters for refitting the estimator at the end. Where there are considerations other than maximum score in choosing a best estimator, refit can be set to a function which returns the selected best_index_ given cv_results_. In that case, the best_estimator_ and best_params_ will be set according to the returned best_index_ while the best_score_ attribute will not be available. The refitted estimator is made available at the best_estimator_ attribute and permits using predict directly on this GridSearchCV instance. Also for multiple metric evaluation, the attributes best_index_, best_score_ and best_params_ will only be available if refit is set and all of them will be determined w.r.t this specific scorer. See scoring parameter to know more about multiple metric evaluation. See Custom refit strategy of a grid search with cross-validation to see how to design a custom selection strategy using a callable via refit.
opts.return_train_score?booleanIf false, the cv_results_ attribute will not include training scores. Computing training scores is used to get insights on how different parameter settings impact the overfitting/underfitting trade-off. However computing the scores on the training set can be computationally expensive and is not strictly required to select the parameters that yield the best generalization performance.
opts.scoring?anyStrategy to evaluate the performance of the cross-validated model on the test set. If scoring represents a single score, one can use:
opts.verbose?numberControls the verbosity: the higher, the more messages.

Returns GridSearchCV

Defined in generated/model_selection/GridSearchCV.ts:29

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/model_selection/GridSearchCV.ts:27
_isInitializedbooleanfalsegenerated/model_selection/GridSearchCV.ts:26
_pyPythonBridgeundefinedgenerated/model_selection/GridSearchCV.ts:25
idstringundefinedgenerated/model_selection/GridSearchCV.ts:22
optsanyundefinedgenerated/model_selection/GridSearchCV.ts:23

Accessors

best_estimator_

Get Signature

get best_estimator_(): Promise<any>

Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False.

See refit parameter for more information on allowed values.

Returns Promise<any>

Defined in generated/model_selection/GridSearchCV.ts:575


best_index_

Get Signature

get best_index_(): Promise<number>

The index (of the cv_results_ arrays) which corresponds to the best candidate parameter setting.

The dict at search.cv_results_\['params'\]\[search.best_index_\] gives the parameter setting for the best model, that gives the highest mean score (search.best_score_).

For multi-metric evaluation, this is present only if refit is specified.

Returns Promise<number>

Defined in generated/model_selection/GridSearchCV.ts:660


best_params_

Get Signature

get best_params_(): Promise<any>

Parameter setting that gave the best results on the hold out data.

For multi-metric evaluation, this is present only if refit is specified.

Returns Promise<any>

Defined in generated/model_selection/GridSearchCV.ts:631


best_score_

Get Signature

get best_score_(): Promise<number>

Mean cross-validated score of the best_estimator

For multi-metric evaluation, this is present only if refit is specified.

This attribute is not available if refit is a function.

Returns Promise<number>

Defined in generated/model_selection/GridSearchCV.ts:604


cv_results_

Get Signature

get cv_results_(): Promise<any>

A dict with keys as column headers and values as columns, that can be imported into a pandas DataFrame.

For instance the below given table

Returns Promise<any>

Defined in generated/model_selection/GridSearchCV.ts:548


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Only defined if best_estimator_ is defined (see the documentation for the refit parameter for more details) and that best_estimator_ exposes feature_names_in_ when fit.

Returns Promise<ArrayLike>

Defined in generated/model_selection/GridSearchCV.ts:787


multimetric_

Get Signature

get multimetric_(): Promise<boolean>

Whether or not the scorers compute several metrics.

Returns Promise<boolean>

Defined in generated/model_selection/GridSearchCV.ts:762


n_splits_

Get Signature

get n_splits_(): Promise<number>

The number of cross-validation splits (folds/iterations).

Returns Promise<number>

Defined in generated/model_selection/GridSearchCV.ts:710


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/model_selection/GridSearchCV.ts:104


refit_time_

Get Signature

get refit_time_(): Promise<number>

Seconds used for refitting the best model on the whole dataset.

This is present only if refit is not false.

Returns Promise<number>

Defined in generated/model_selection/GridSearchCV.ts:737


scorer_

Get Signature

get scorer_(): Promise<any>

Scorer function used on the held out data to choose the best parameters for the model.

For multi-metric evaluation, this attribute holds the validated scoring dict which maps the scorer key to the scorer callable.

Returns Promise<any>

Defined in generated/model_selection/GridSearchCV.ts:687

Methods

decision_function()

decision_function(opts): Promise<ArrayLike>

Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyMust fulfill the input assumptions of the underlying estimator.

Returns Promise<ArrayLike>

Defined in generated/model_selection/GridSearchCV.ts:175


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/model_selection/GridSearchCV.ts:156


fit()

fit(opts): Promise<any>

Run fit with all sets of parameters.

Parameters

ParameterTypeDescription
optsobject-
opts.params?anyParameters passed to the fit method of the estimator, the scorer, and the CV splitter. If a fit parameter is an array-like whose length is equal to num_samples then it will be split across CV groups along with X and y. For example, the sample_weight parameter is split because len(sample_weights) \= len(X).
opts.X?ArrayLike[]Training vectors, where n_samples is the number of samples and n_features is the number of features. For precomputed kernel or distance matrix, the expected shape of X is (n_samples, n_samples).
opts.y?ArrayLike[]Target relative to X for classification or regression; undefined for unsupervised learning.

Returns Promise<any>

Defined in generated/model_selection/GridSearchCV.ts:209


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRouter encapsulating routing information.

Returns Promise<any>

Defined in generated/model_selection/GridSearchCV.ts:255


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/model_selection/GridSearchCV.ts:117


inverse_transform()

inverse_transform(opts): Promise<ArrayLike>

Call inverse_transform on the estimator with the best found params.

Only available if the underlying estimator implements inverse_transform and refit=True.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyMust fulfill the input assumptions of the underlying estimator.
opts.Xt?anyMust fulfill the input assumptions of the underlying estimator.

Returns Promise<ArrayLike>

Defined in generated/model_selection/GridSearchCV.ts:291


predict()

predict(opts): Promise<ArrayLike>

Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyMust fulfill the input assumptions of the underlying estimator.

Returns Promise<ArrayLike>

Defined in generated/model_selection/GridSearchCV.ts:332


predict_log_proba()

predict_log_proba(opts): Promise<ArrayLike>

Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyMust fulfill the input assumptions of the underlying estimator.

Returns Promise<ArrayLike>

Defined in generated/model_selection/GridSearchCV.ts:366


predict_proba()

predict_proba(opts): Promise<ArrayLike>

Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyMust fulfill the input assumptions of the underlying estimator.

Returns Promise<ArrayLike>

Defined in generated/model_selection/GridSearchCV.ts:402


score()

score(opts): Promise<number>

Return the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method otherwise.

Parameters

ParameterTypeDescription
optsobject-
opts.params?anyParameters to be passed to the underlying scorer(s).
opts.X?ArrayLike[]Input data, where n_samples is the number of samples and n_features is the number of features.
opts.y?ArrayLike[]Target relative to X for classification or regression; undefined for unsupervised learning.

Returns Promise<number>

Defined in generated/model_selection/GridSearchCV.ts:436


score_samples()

score_samples(opts): Promise<ArrayLike>

Call score_samples on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports score_samples.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyData to predict on. Must fulfill input requirements of the underlying estimator.

Returns Promise<ArrayLike>

Defined in generated/model_selection/GridSearchCV.ts:480


transform()

transform(opts): Promise<ArrayLike>

Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyMust fulfill the input assumptions of the underlying estimator.

Returns Promise<ArrayLike>

Defined in generated/model_selection/GridSearchCV.ts:514