DocumentationClassesMiniBatchSparsePCA

Class: MiniBatchSparsePCA

Mini-batch Sparse Principal Components Analysis.

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is controllable by the coefficient of the L1 penalty, given by the parameter alpha.

For an example comparing sparse PCA to PCA, see Faces dataset decompositions

Read more in the User Guide.

Python Reference

Constructors

new MiniBatchSparsePCA()

new MiniBatchSparsePCA(opts?): MiniBatchSparsePCA

Parameters

ParameterTypeDescription
opts?object-
opts.alpha?numberSparsity controlling parameter. Higher values lead to sparser components.
opts.batch_size?numberThe number of features to take in each mini batch.
opts.callback?anyCallable that gets invoked every five iterations.
opts.max_iter?numberMaximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics.
opts.max_no_improvement?numberControl early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed cost function. To disable convergence detection based on cost function, set max_no_improvement to undefined.
opts.method?"cd" | "lars"Method to be used for optimization. lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.
opts.n_components?numberNumber of sparse atoms to extract. If undefined, then n_components is set to n_features.
opts.n_jobs?numberNumber of parallel jobs to run. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details.
opts.random_state?numberUsed for random shuffling when shuffle is set to true, during online dictionary learning. Pass an int for reproducible results across multiple function calls. See Glossary.
opts.ridge_alpha?numberAmount of ridge shrinkage to apply in order to improve conditioning when calling the transform method.
opts.shuffle?booleanWhether to shuffle the data before splitting it in batches.
opts.tol?numberControl early stopping based on the norm of the differences in the dictionary between 2 steps. To disable early stopping based on changes in the dictionary, set tol to 0.0.
opts.verbose?number | booleanControls the verbosity; the higher, the more messages. Defaults to 0.

Returns MiniBatchSparsePCA

Defined in generated/decomposition/MiniBatchSparsePCA.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/decomposition/MiniBatchSparsePCA.ts:25
_isInitializedbooleanfalsegenerated/decomposition/MiniBatchSparsePCA.ts:24
_pyPythonBridgeundefinedgenerated/decomposition/MiniBatchSparsePCA.ts:23
idstringundefinedgenerated/decomposition/MiniBatchSparsePCA.ts:20
optsanyundefinedgenerated/decomposition/MiniBatchSparsePCA.ts:21

Accessors

components_

Get Signature

get components_(): Promise<ArrayLike[]>

Sparse components extracted from the data.

Returns Promise<ArrayLike[]>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:467


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:602


mean_

Get Signature

get mean_(): Promise<ArrayLike>

Per-feature empirical mean, estimated from the training set. Equal to X.mean(axis=0).

Returns Promise<ArrayLike>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:548


n_components_

Get Signature

get n_components_(): Promise<number>

Estimated number of components.

Returns Promise<number>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:494


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:575


n_iter_

Get Signature

get n_iter_(): Promise<number>

Number of iterations run.

Returns Promise<number>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:521


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/decomposition/MiniBatchSparsePCA.ts:119

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:175


fit()

fit(opts): Promise<any>

Fit the model from data in X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Training vector, where n_samples is the number of samples and n_features is the number of features.
opts.y?anyNot used, present here for API consistency by convention.

Returns Promise<any>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:192


fit_transform()

fit_transform(opts): Promise<any[]>

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyAdditional fit parameters.
opts.X?ArrayLike[]Input samples.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns Promise<any[]>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:233


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Get output feature names for transformation.

The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: \["class_name0", "class_name1", "class_name2"\].

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyOnly used to validate feature names with the names seen in fit.

Returns Promise<any>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:281


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:319


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:132


inverse_transform()

inverse_transform(opts): Promise<ArrayLike[]>

Transform data from the latent space to the original space.

This inversion is an approximation due to the loss of information induced by the forward decomposition.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Data in the latent space.

Returns Promise<ArrayLike[]>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:357


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:395


transform()

transform(opts): Promise<ArrayLike[]>

Least Squares projection of the data onto the sparse components.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple linear projection.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Test data to be transformed, must have the same number of features as the data used to train the model.

Returns Promise<ArrayLike[]>

Defined in generated/decomposition/MiniBatchSparsePCA.ts:433