DocumentationClassesLinearDiscriminantAnalysis

Class: LinearDiscriminantAnalysis

Linear Discriminant Analysis.

A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes’ rule.

The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix.

The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions, using the transform method.

Python Reference

Constructors

new LinearDiscriminantAnalysis()

new LinearDiscriminantAnalysis(opts?): LinearDiscriminantAnalysis

Parameters

ParameterTypeDescription
opts?object-
opts.covariance_estimator?anyIf not undefined, covariance_estimator is used to estimate the covariance matrices instead of relying on the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a covariance_ attribute like the estimators in sklearn.covariance. if undefined the shrinkage parameter drives the estimate. This should be left to undefined if shrinkage is used. Note that covariance_estimator works only with ‘lsqr’ and ‘eigen’ solvers.
opts.n_components?numberNumber of components (<= min(n_classes - 1, n_features)) for dimensionality reduction. If undefined, will be set to min(n_classes - 1, n_features). This parameter only affects the transform method. For a usage example, see Comparison of LDA and PCA 2D projection of Iris dataset.
opts.priors?ArrayLikeThe class prior probabilities. By default, the class proportions are inferred from the training data.
opts.shrinkage?number | "auto"None: no shrinkage (default).
opts.solver?"svd" | "lsqr" | "eigen"‘svd’: Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features.
opts.store_covariance?booleanIf true, explicitly compute the weighted within-class covariance matrix when solver is ‘svd’. The matrix is always computed and stored for the other solvers.
opts.tol?numberAbsolute threshold for a singular value of X to be considered significant, used to estimate the rank of X. Dimensions whose singular values are non-significant are discarded. Only used if solver is ‘svd’.

Returns LinearDiscriminantAnalysis

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/discriminant_analysis/LinearDiscriminantAnalysis.ts:25
_isInitializedbooleanfalsegenerated/discriminant_analysis/LinearDiscriminantAnalysis.ts:24
_pyPythonBridgeundefinedgenerated/discriminant_analysis/LinearDiscriminantAnalysis.ts:23
idstringundefinedgenerated/discriminant_analysis/LinearDiscriminantAnalysis.ts:20
optsanyundefinedgenerated/discriminant_analysis/LinearDiscriminantAnalysis.ts:21

Accessors

classes_

Get Signature

get classes_(): Promise<ArrayLike>

Unique class labels.

Returns Promise<ArrayLike>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:839


coef_

Get Signature

get coef_(): Promise<ArrayLike>

Weight vector(s).

Returns Promise<ArrayLike>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:623


covariance_

Get Signature

get covariance_(): Promise<ArrayLike[]>

Weighted within-class covariance matrix. It corresponds to sum_k prior_k \* C_k where C_k is the covariance matrix of the samples in class k. The C_k are estimated using the (potentially shrunk) biased estimator of covariance. If solver is ‘svd’, only exists when store_covariance is true.

Returns Promise<ArrayLike[]>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:677


explained_variance_ratio_

Get Signature

get explained_variance_ratio_(): Promise<ArrayLike>

Percentage of variance explained by each of the selected components. If n_components is not set then all components are stored and the sum of explained variances is equal to 1.0. Only available when eigen or svd solver is used.

Returns Promise<ArrayLike>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:704


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:893


intercept_

Get Signature

get intercept_(): Promise<ArrayLike>

Intercept term.

Returns Promise<ArrayLike>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:650


means_

Get Signature

get means_(): Promise<ArrayLike[]>

Class-wise means.

Returns Promise<ArrayLike[]>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:731


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:866


priors_

Get Signature

get priors_(): Promise<ArrayLike>

Class priors (sum to 1).

Returns Promise<ArrayLike>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:758


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:77


scalings_

Get Signature

get scalings_(): Promise<ArrayLike[]>

Scaling of the features in the space spanned by the class centroids. Only available for ‘svd’ and ‘eigen’ solvers.

Returns Promise<ArrayLike[]>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:785


xbar_

Get Signature

get xbar_(): Promise<ArrayLike>

Overall mean. Only present if solver is ‘svd’.

Returns Promise<ArrayLike>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:812

Methods

decision_function()

decision_function(opts): Promise<ArrayLike>

Apply decision function to an array of samples.

The decision function is equal (up to a constant factor) to the log-posterior of the model, i.e. log p(y \= k | x). In a binary classification setting this instead corresponds to the difference log p(y \= 1 | x) \- log p(y \= 0 | x). See Mathematical formulation of the LDA and QDA classifiers.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Array of samples (test vectors).

Returns Promise<ArrayLike>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:152


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:133


fit()

fit(opts): Promise<any>

Fit the Linear Discriminant Analysis model.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Training data.
opts.y?ArrayLikeTarget values.

Returns Promise<any>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:188


fit_transform()

fit_transform(opts): Promise<any[]>

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyAdditional fit parameters.
opts.X?ArrayLike[]Input samples.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns Promise<any[]>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:231


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Get output feature names for transformation.

The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: \["class_name0", "class_name1", "class_name2"\].

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyOnly used to validate feature names with the names seen in fit.

Returns Promise<any>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:279


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:317


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:90


predict()

predict(opts): Promise<ArrayLike>

Predict class labels for samples in X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeThe data matrix for which we want to get the predictions.

Returns Promise<ArrayLike>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:353


predict_log_proba()

predict_log_proba(opts): Promise<ArrayLike[]>

Estimate log probability.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Input data.

Returns Promise<ArrayLike[]>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:389


predict_proba()

predict_proba(opts): Promise<ArrayLike[]>

Estimate probability.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Input data.

Returns Promise<ArrayLike[]>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:425


score()

score(opts): Promise<number>

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples.
opts.y?ArrayLikeTrue labels for X.

Returns Promise<number>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:463


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:511


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:551


transform()

transform(opts): Promise<ArrayLike[]>

Project data to maximize class separation.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Input data.

Returns Promise<ArrayLike[]>

Defined in generated/discriminant_analysis/LinearDiscriminantAnalysis.ts:587