Class: StackingRegressor
Stack of estimators with a final regressor.
Stacked generalization consists in stacking the output of individual estimator and use a regressor to compute the final prediction. Stacking allows to use the strength of each individual estimator by using their output as input of a final estimator.
Note that estimators_
are fitted on the full X
while final_estimator_
is trained using cross-validated predictions of the base estimators using cross_val_predict
.
Read more in the User Guide.
Constructors
new StackingRegressor()
new StackingRegressor(
opts
?):StackingRegressor
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.cv ? | number | "prefit" | Determines the cross-validation splitting strategy used in cross_val_predict to train final_estimator . Possible inputs for cv are: |
opts.estimators ? | any | Base estimators which will be stacked together. Each element of the list is defined as a tuple of string (i.e. name) and an estimator instance. An estimator can be set to ‘drop’ using set_params . |
opts.final_estimator ? | any | A regressor which will be used to combine the base estimators. The default regressor is a RidgeCV . |
opts.n_jobs ? | number | The number of jobs to run in parallel for fit of all estimators . undefined means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details. |
opts.passthrough ? | boolean | When false , only the predictions of estimators will be used as training data for final_estimator . When true , the final_estimator is trained on the predictions as well as the original training data. |
opts.verbose ? | number | Verbosity level. |
Returns StackingRegressor
Defined in generated/ensemble/StackingRegressor.ts:27
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/ensemble/StackingRegressor.ts:25 |
_isInitialized | boolean | false | generated/ensemble/StackingRegressor.ts:24 |
_py | PythonBridge | undefined | generated/ensemble/StackingRegressor.ts:23 |
id | string | undefined | generated/ensemble/StackingRegressor.ts:20 |
opts | any | undefined | generated/ensemble/StackingRegressor.ts:21 |
Accessors
estimators_
Get Signature
get estimators_():
Promise
<any
>
The elements of the estimators
parameter, having been fitted on the training data. If an estimator has been set to 'drop'
, it will not appear in estimators_
. When cv="prefit"
, estimators_
is set to estimators
and is not fitted again.
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:530
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Only defined if the underlying estimators expose such an attribute when fit.
Returns Promise
<ArrayLike
>
Defined in generated/ensemble/StackingRegressor.ts:584
final_estimator_
Get Signature
get final_estimator_():
Promise
<any
>
The regressor to stacked the base estimators fitted.
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:611
named_estimators_
Get Signature
get named_estimators_():
Promise
<any
>
Attribute to access any fitted sub-estimators by name.
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:557
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/ensemble/StackingRegressor.ts:66
stack_method_
Get Signature
get stack_method_():
Promise
<any
>
The method used by each base estimator.
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:638
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/ensemble/StackingRegressor.ts:120
fit()
fit(
opts
):Promise
<any
>
Fit the estimators.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. If undefined , then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights. |
opts.X ? | ArrayLike | Training vectors, where n_samples is the number of samples and n_features is the number of features. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:137
fit_transform()
fit_transform(
opts
):Promise
<ArrayLike
[]>
Fit the estimators and return the predictions for X for each estimator.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. If undefined , then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights. |
opts.X ? | ArrayLike | Training vectors, where n_samples is the number of samples and n_features is the number of features. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<ArrayLike
[]>
Defined in generated/ensemble/StackingRegressor.ts:181
get_feature_names_out()
get_feature_names_out(
opts
):Promise
<any
>
Get output feature names for transformation.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.input_features ? | any | Input features. The input feature names are only used when passthrough is true . |
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:227
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Raise NotImplementedError
.
This estimator does not support metadata routing yet.
Parameters
Parameter | Type |
---|---|
opts | object |
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:265
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/ensemble/StackingRegressor.ts:79
predict()
predict(
opts
):Promise
<ArrayLike
>
Predict target for X.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.predict_params ? | any | Parameters to the predict called by the final_estimator . Note that this may be used to return uncertainties from some estimators with return_std or return_cov . Be aware that it will only accounts for uncertainty in the final estimator. |
opts.X ? | ArrayLike | Training vectors, where n_samples is the number of samples and n_features is the number of features. |
Returns Promise
<ArrayLike
>
Defined in generated/ensemble/StackingRegressor.ts:295
score()
score(
opts
):Promise
<number
>
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum()
and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y
, disregarding the input features, would get a \(R^2\) score of 0.0.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike [] | Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted) , where n_samples_fitted is the number of samples used in the fitting for the estimator. |
opts.y ? | ArrayLike | True values for X . |
Returns Promise
<number
>
Defined in generated/ensemble/StackingRegressor.ts:336
set_fit_request()
set_fit_request(
opts
):Promise
<any
>
Request metadata passed to the fit
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in fit . |
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:384
set_output()
set_output(
opts
):Promise
<any
>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.transform ? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform . |
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:422
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/ensemble/StackingRegressor.ts:460
transform()
transform(
opts
):Promise
<ArrayLike
[]>
Return the predictions for X for each estimator.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Training vectors, where n_samples is the number of samples and n_features is the number of features. |
Returns Promise
<ArrayLike
[]>
Defined in generated/ensemble/StackingRegressor.ts:496