DocumentationClassesStackingRegressor

Class: StackingRegressor

Stack of estimators with a final regressor.

Stacked generalization consists in stacking the output of individual estimator and use a regressor to compute the final prediction. Stacking allows to use the strength of each individual estimator by using their output as input of a final estimator.

Note that estimators_ are fitted on the full X while final_estimator_ is trained using cross-validated predictions of the base estimators using cross_val_predict.

Read more in the User Guide.

Python Reference

Constructors

new StackingRegressor()

new StackingRegressor(opts?): StackingRegressor

Parameters

ParameterTypeDescription
opts?object-
opts.cv?number | "prefit"Determines the cross-validation splitting strategy used in cross_val_predict to train final_estimator. Possible inputs for cv are:
opts.estimators?anyBase estimators which will be stacked together. Each element of the list is defined as a tuple of string (i.e. name) and an estimator instance. An estimator can be set to ‘drop’ using set_params.
opts.final_estimator?anyA regressor which will be used to combine the base estimators. The default regressor is a RidgeCV.
opts.n_jobs?numberThe number of jobs to run in parallel for fit of all estimators. undefined means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.
opts.passthrough?booleanWhen false, only the predictions of estimators will be used as training data for final_estimator. When true, the final_estimator is trained on the predictions as well as the original training data.
opts.verbose?numberVerbosity level.

Returns StackingRegressor

Defined in generated/ensemble/StackingRegressor.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/ensemble/StackingRegressor.ts:25
_isInitializedbooleanfalsegenerated/ensemble/StackingRegressor.ts:24
_pyPythonBridgeundefinedgenerated/ensemble/StackingRegressor.ts:23
idstringundefinedgenerated/ensemble/StackingRegressor.ts:20
optsanyundefinedgenerated/ensemble/StackingRegressor.ts:21

Accessors

estimators_

Get Signature

get estimators_(): Promise<any>

The elements of the estimators parameter, having been fitted on the training data. If an estimator has been set to 'drop', it will not appear in estimators_. When cv="prefit", estimators_ is set to estimators and is not fitted again.

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:530


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Only defined if the underlying estimators expose such an attribute when fit.

Returns Promise<ArrayLike>

Defined in generated/ensemble/StackingRegressor.ts:584


final_estimator_

Get Signature

get final_estimator_(): Promise<any>

The regressor to stacked the base estimators fitted.

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:611


named_estimators_

Get Signature

get named_estimators_(): Promise<any>

Attribute to access any fitted sub-estimators by name.

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:557


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/ensemble/StackingRegressor.ts:66


stack_method_

Get Signature

get stack_method_(): Promise<any>

The method used by each base estimator.

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:638

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/ensemble/StackingRegressor.ts:120


fit()

fit(opts): Promise<any>

Fit the estimators.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights. If undefined, then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights.
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.
opts.y?ArrayLikeTarget values.

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:137


fit_transform()

fit_transform(opts): Promise<ArrayLike[]>

Fit the estimators and return the predictions for X for each estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights. If undefined, then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights.
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.
opts.y?ArrayLikeTarget values.

Returns Promise<ArrayLike[]>

Defined in generated/ensemble/StackingRegressor.ts:181


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Get output feature names for transformation.

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyInput features. The input feature names are only used when passthrough is true.

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:227


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Raise NotImplementedError.

This estimator does not support metadata routing yet.

Parameters

ParameterType
optsobject

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:265


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/ensemble/StackingRegressor.ts:79


predict()

predict(opts): Promise<ArrayLike>

Predict target for X.

Parameters

ParameterTypeDescription
optsobject-
opts.predict_params?anyParameters to the predict called by the final_estimator. Note that this may be used to return uncertainties from some estimators with return_std or return_cov. Be aware that it will only accounts for uncertainty in the final estimator.
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<ArrayLike>

Defined in generated/ensemble/StackingRegressor.ts:295


score()

score(opts): Promise<number>

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum() and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
opts.y?ArrayLikeTrue values for X.

Returns Promise<number>

Defined in generated/ensemble/StackingRegressor.ts:336


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:384


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:422


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/ensemble/StackingRegressor.ts:460


transform()

transform(opts): Promise<ArrayLike[]>

Return the predictions for X for each estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<ArrayLike[]>

Defined in generated/ensemble/StackingRegressor.ts:496