DocumentationClassesOneVsOneClassifier

Class: OneVsOneClassifier

One-vs-one multiclass strategy.

This strategy consists in fitting one classifier per class pair. At prediction time, the class which received the most votes is selected. Since it requires to fit n_classes \* (n_classes \- 1) / 2 classifiers, this method is usually slower than one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may be advantageous for algorithms such as kernel algorithms which don’t scale well with n_samples. This is because each individual learning problem only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is used n_classes times.

Read more in the User Guide.

Python Reference

Constructors

new OneVsOneClassifier()

new OneVsOneClassifier(opts?): OneVsOneClassifier

Parameters

ParameterTypeDescription
opts?object-
opts.estimator?anyA regressor or a classifier that implements fit. When a classifier is passed, decision_function will be used in priority and it will fallback to predict_proba if it is not available. When a regressor is passed, predict is used.
opts.n_jobs?numberThe number of jobs to use for the computation: the n_classes \* ( n_classes \- 1) / 2 OVO problems are computed in parallel. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details.

Returns OneVsOneClassifier

Defined in generated/multiclass/OneVsOneClassifier.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/multiclass/OneVsOneClassifier.ts:23
_isInitializedbooleanfalsegenerated/multiclass/OneVsOneClassifier.ts:22
_pyPythonBridgeundefinedgenerated/multiclass/OneVsOneClassifier.ts:21
idstringundefinedgenerated/multiclass/OneVsOneClassifier.ts:18
optsanyundefinedgenerated/multiclass/OneVsOneClassifier.ts:19

Accessors

classes_

Get Signature

get classes_(): Promise<any>

Array containing labels.

Returns Promise<any>

Defined in generated/multiclass/OneVsOneClassifier.ts:477


estimators_

Get Signature

get estimators_(): Promise<any>

Estimators used for predictions.

Returns Promise<any>

Defined in generated/multiclass/OneVsOneClassifier.ts:450


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/multiclass/OneVsOneClassifier.ts:558


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/multiclass/OneVsOneClassifier.ts:531


pairwise_indices_

Get Signature

get pairwise_indices_(): Promise<any[]>

Indices of samples used when training the estimators. undefined when estimator’s pairwise tag is false.

Returns Promise<any[]>

Defined in generated/multiclass/OneVsOneClassifier.ts:504


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/multiclass/OneVsOneClassifier.ts:42

Methods

decision_function()

decision_function(opts): Promise<ArrayLike[]>

Decision function for the OneVsOneClassifier.

The decision values for the samples are computed by adding the normalized sum of pair-wise classification confidence levels to the votes in order to disambiguate between the decision values when the votes for all the classes are equal leading to a tie.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Input data.

Returns Promise<ArrayLike[]>

Defined in generated/multiclass/OneVsOneClassifier.ts:117


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/multiclass/OneVsOneClassifier.ts:98


fit()

fit(opts): Promise<any>

Fit underlying estimators.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyParameters passed to the estimator.fit method of each sub-estimator.
opts.X?ArrayLikeData.
opts.y?ArrayLikeMulti-class targets.

Returns Promise<any>

Defined in generated/multiclass/OneVsOneClassifier.ts:153


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRouter encapsulating routing information.

Returns Promise<any>

Defined in generated/multiclass/OneVsOneClassifier.ts:199


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/multiclass/OneVsOneClassifier.ts:55


partial_fit()

partial_fit(opts): Promise<any>

Partially fit underlying estimators.

Should be used when memory is inefficient to train all data. Chunks of data can be passed in several iteration, where the first call should have an array of all target variables.

Parameters

ParameterTypeDescription
optsobject-
opts.classes?anyClasses across all calls to partial_fit. Can be obtained via np.unique(y_all), where y_all is the target vector of the entire dataset. This argument is only required in the first call of partial_fit and can be omitted in the subsequent calls.
opts.partial_fit_params?anyParameters passed to the estimator.partial_fit method of each sub-estimator.
opts.X?any[]Data.
opts.y?ArrayLikeMulti-class targets.

Returns Promise<any>

Defined in generated/multiclass/OneVsOneClassifier.ts:237


predict()

predict(opts): Promise<any>

Estimate the best class label for each sample in X.

This is implemented as argmax(decision_function(X), axis=1) which will return the label of the class with most votes by estimators predicting the outcome of a decision for each possible class pair.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeData.

Returns Promise<any>

Defined in generated/multiclass/OneVsOneClassifier.ts:290


score()

score(opts): Promise<number>

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples.
opts.y?ArrayLikeTrue labels for X.

Returns Promise<number>

Defined in generated/multiclass/OneVsOneClassifier.ts:326


set_partial_fit_request()

set_partial_fit_request(opts): Promise<any>

Request metadata passed to the partial_fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.classes?string | booleanMetadata routing for classes parameter in partial_fit.

Returns Promise<any>

Defined in generated/multiclass/OneVsOneClassifier.ts:374


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/multiclass/OneVsOneClassifier.ts:414