Class: RepeatedKFold

Repeated K-Fold cross validator.

Repeats K-Fold n times with different randomization in each repetition.

Read more in the User Guide.

Python Reference

Constructors

new RepeatedKFold()

new RepeatedKFold(opts?): RepeatedKFold

Parameters

ParameterTypeDescription
opts?object-
opts.n_repeats?numberNumber of times cross-validator needs to be repeated.
opts.n_splits?numberNumber of folds. Must be at least 2.
opts.random_state?numberControls the randomness of each repeated cross-validation instance. Pass an int for reproducible output across multiple function calls. See Glossary.

Returns RepeatedKFold

Defined in generated/model_selection/RepeatedKFold.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/model_selection/RepeatedKFold.ts:23
_isInitializedbooleanfalsegenerated/model_selection/RepeatedKFold.ts:22
_pyPythonBridgeundefinedgenerated/model_selection/RepeatedKFold.ts:21
idstringundefinedgenerated/model_selection/RepeatedKFold.ts:18
optsanyundefinedgenerated/model_selection/RepeatedKFold.ts:19

Accessors

py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/model_selection/RepeatedKFold.ts:49

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/model_selection/RepeatedKFold.ts:101


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/model_selection/RepeatedKFold.ts:120


get_n_splits()

get_n_splits(opts): Promise<number>

Returns the number of splitting iterations in the cross-validator.

Parameters

ParameterTypeDescription
optsobject-
opts.groups?ArrayLikeGroup labels for the samples used while splitting the dataset into train/test set.
opts.X?anyAlways ignored, exists for compatibility. np.zeros(n_samples) may be used as a placeholder.
opts.y?anyAlways ignored, exists for compatibility. np.zeros(n_samples) may be used as a placeholder.

Returns Promise<number>

Defined in generated/model_selection/RepeatedKFold.ts:154


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/model_selection/RepeatedKFold.ts:62


split()

split(opts): Promise<ArrayLike>

Generate indices to split data into training and test set.

Parameters

ParameterTypeDescription
optsobject-
opts.groups?anyAlways ignored, exists for compatibility.
opts.X?ArrayLike[]Training data, where n_samples is the number of samples and n_features is the number of features.
opts.y?ArrayLikeThe target variable for supervised learning problems.

Returns Promise<ArrayLike>

Defined in generated/model_selection/RepeatedKFold.ts:196