RepeatedKFold
Repeated K-Fold cross validator.
Repeats K-Fold n times with different randomization in each repetition.
Read more in the User Guide.
Python Reference (opens in a new tab)
Constructors
constructor()
Signature
new RepeatedKFold(opts?: object): RepeatedKFold;
Parameters
Name | Type | Description |
---|---|---|
opts? | object | - |
opts.n_repeats? | number | Number of times cross-validator needs to be repeated. Default Value 10 |
opts.n_splits? | number | Number of folds. Must be at least 2. Default Value 5 |
opts.random_state? | number | Controls the randomness of each repeated cross-validation instance. Pass an int for reproducible output across multiple function calls. See Glossary. |
Returns
Defined in: generated/model_selection/RepeatedKFold.ts:25 (opens in a new tab)
Methods
dispose()
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Signature
dispose(): Promise<void>;
Returns
Promise
<void
>
Defined in: generated/model_selection/RepeatedKFold.ts:104 (opens in a new tab)
get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Signature
get_metadata_routing(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns
Promise
<any
>
Defined in: generated/model_selection/RepeatedKFold.ts:123 (opens in a new tab)
get_n_splits()
Returns the number of splitting iterations in the cross-validator
Signature
get_n_splits(opts: object): Promise<number>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Always ignored, exists for compatibility. np.zeros(n\_samples) may be used as a placeholder. |
opts.groups? | ArrayLike | Group labels for the samples used while splitting the dataset into train/test set. |
opts.y? | any | Always ignored, exists for compatibility. np.zeros(n\_samples) may be used as a placeholder. |
Returns
Promise
<number
>
Defined in: generated/model_selection/RepeatedKFold.ts:158 (opens in a new tab)
init()
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Signature
init(py: PythonBridge): Promise<void>;
Parameters
Name | Type |
---|---|
py | PythonBridge |
Returns
Promise
<void
>
Defined in: generated/model_selection/RepeatedKFold.ts:62 (opens in a new tab)
split()
Generates indices to split data into training and test set.
Signature
split(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | Training data, where n\_samples is the number of samples and n\_features is the number of features. |
opts.groups? | ArrayLike | Group labels for the samples used while splitting the dataset into train/test set. |
opts.y? | ArrayLike | The target variable for supervised learning problems. |
Returns
Promise
<ArrayLike
>
Defined in: generated/model_selection/RepeatedKFold.ts:203 (opens in a new tab)
Properties
_isDisposed
boolean
=false
Defined in: generated/model_selection/RepeatedKFold.ts:23 (opens in a new tab)
_isInitialized
boolean
=false
Defined in: generated/model_selection/RepeatedKFold.ts:22 (opens in a new tab)
_py
PythonBridge
Defined in: generated/model_selection/RepeatedKFold.ts:21 (opens in a new tab)
id
string
Defined in: generated/model_selection/RepeatedKFold.ts:18 (opens in a new tab)
opts
any
Defined in: generated/model_selection/RepeatedKFold.ts:19 (opens in a new tab)
Accessors
py
Signature
py(): PythonBridge;
Returns
PythonBridge
Defined in: generated/model_selection/RepeatedKFold.ts:49 (opens in a new tab)
Signature
py(pythonBridge: PythonBridge): void;
Parameters
Name | Type |
---|---|
pythonBridge | PythonBridge |
Returns
void
Defined in: generated/model_selection/RepeatedKFold.ts:53 (opens in a new tab)