DocumentationClassesGraphicalLasso

Class: GraphicalLasso

Sparse inverse covariance estimation with an l1-penalized estimator.

For a usage example see Visualizing the stock market structure.

Read more in the User Guide.

Python Reference

Constructors

new GraphicalLasso()

new GraphicalLasso(opts?): GraphicalLasso

Parameters

ParameterTypeDescription
opts?object-
opts.alpha?numberThe regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. Range is (0, inf].
opts.assume_centered?booleanIf true, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If false, data are centered before computation.
opts.covariance?"precomputed"If covariance is “precomputed”, the input data in fit is assumed to be the covariance matrix. If undefined, the empirical covariance is estimated from the data X.
opts.enet_tol?numberThe tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode=’cd’. Range is (0, inf].
opts.eps?numberThe machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Default is np.finfo(np.float64).eps.
opts.max_iter?numberThe maximum number of iterations.
opts.mode?"cd" | "lars"The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.
opts.tol?numberThe tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. Range is (0, inf].
opts.verbose?booleanIf verbose is true, the objective function and dual gap are plotted at each iteration.

Returns GraphicalLasso

Defined in generated/covariance/GraphicalLasso.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/covariance/GraphicalLasso.ts:23
_isInitializedbooleanfalsegenerated/covariance/GraphicalLasso.ts:22
_pyPythonBridgeundefinedgenerated/covariance/GraphicalLasso.ts:21
idstringundefinedgenerated/covariance/GraphicalLasso.ts:18
optsanyundefinedgenerated/covariance/GraphicalLasso.ts:19

Accessors

costs_

Get Signature

get costs_(): Promise<any>

The list of values of the objective function and the dual gap at each iteration. Returned only if return_costs is true.

Returns Promise<any>

Defined in generated/covariance/GraphicalLasso.ts:525


covariance_

Get Signature

get covariance_(): Promise<ArrayLike[]>

Estimated covariance matrix

Returns Promise<ArrayLike[]>

Defined in generated/covariance/GraphicalLasso.ts:450


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/covariance/GraphicalLasso.ts:573


location_

Get Signature

get location_(): Promise<ArrayLike>

Estimated location, i.e. the estimated mean.

Returns Promise<ArrayLike>

Defined in generated/covariance/GraphicalLasso.ts:425


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/covariance/GraphicalLasso.ts:548


n_iter_

Get Signature

get n_iter_(): Promise<number>

Number of iterations run.

Returns Promise<number>

Defined in generated/covariance/GraphicalLasso.ts:500


precision_

Get Signature

get precision_(): Promise<ArrayLike[]>

Estimated pseudo inverse matrix.

Returns Promise<ArrayLike[]>

Defined in generated/covariance/GraphicalLasso.ts:475


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/covariance/GraphicalLasso.ts:89

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/covariance/GraphicalLasso.ts:141


error_norm()

error_norm(opts): Promise<number>

Compute the Mean Squared Error between two covariance estimators.

Parameters

ParameterTypeDescription
optsobject-
opts.comp_cov?ArrayLike[]The covariance to compare with.
opts.norm?"frobenius" | "spectral"The type of norm used to compute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov \- self.covariance_).
opts.scaling?booleanIf true (default), the squared error norm is divided by n_features. If false, the squared error norm is not rescaled.
opts.squared?booleanWhether to compute the squared error norm or the error norm. If true (default), the squared error norm is returned. If false, the error norm is returned.

Returns Promise<number>

Defined in generated/covariance/GraphicalLasso.ts:158


fit()

fit(opts): Promise<any>

Fit the GraphicalLasso model to X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Data from which to compute the covariance estimate.
opts.y?anyNot used, present for API consistency by convention.

Returns Promise<any>

Defined in generated/covariance/GraphicalLasso.ts:211


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/covariance/GraphicalLasso.ts:250


get_precision()

get_precision(opts): Promise<any>

Getter for the precision matrix.

Parameters

ParameterTypeDescription
optsobject-
opts.precision_?ArrayLike[]The precision matrix associated to the current covariance object.

Returns Promise<any>

Defined in generated/covariance/GraphicalLasso.ts:284


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/covariance/GraphicalLasso.ts:102


mahalanobis()

mahalanobis(opts): Promise<ArrayLike>

Compute the squared Mahalanobis distances of given observations.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit.

Returns Promise<ArrayLike>

Defined in generated/covariance/GraphicalLasso.ts:316


score()

score(opts): Promise<number>

Compute the log-likelihood of X_test under the estimated Gaussian model.

The Gaussian model is defined by its mean and covariance matrix which are represented respectively by self.location_ and self.covariance_.

Parameters

ParameterTypeDescription
optsobject-
opts.X_test?ArrayLike[]Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering).
opts.y?anyNot used, present for API consistency by convention.

Returns Promise<number>

Defined in generated/covariance/GraphicalLasso.ts:350


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.X_test?string | booleanMetadata routing for X_test parameter in score.

Returns Promise<any>

Defined in generated/covariance/GraphicalLasso.ts:391