Class: RFECV

Recursive feature elimination with cross-validation to select features.

The number of features selected is tuned automatically by fitting an RFE selector on the different cross-validation splits (provided by the cv parameter). The performance of the RFE selector are evaluated using scorer for different number of selected features and aggregated together. Finally, the scores are averaged across folds and the number of features selected is set to the number of features that maximize the cross-validation score. See glossary entry for cross-validation estimator.

Read more in the User Guide.

Python Reference

Constructors

new RFECV()

new RFECV(opts?): RFECV

Parameters

ParameterTypeDescription
opts?object-
opts.cv?numberDetermines the cross-validation splitting strategy. Possible inputs for cv are:
opts.estimator?anyA supervised learning estimator with a fit method that provides information about feature importance either through a coef_ attribute or through a feature_importances_ attribute.
opts.importance_getter?stringIf ‘auto’, uses the feature importance either through a coef_ or feature_importances_ attributes of estimator. Also accepts a string that specifies an attribute name/path for extracting feature importance. For example, give regressor_.coef_ in case of TransformedTargetRegressor or named_steps.clf.feature_importances_ in case of Pipeline with its last step named clf. If callable, overrides the default feature importance getter. The callable is passed with the fitted estimator and it should return importance for each feature.
opts.min_features_to_select?numberThe minimum number of features to be selected. This number of features will always be scored, even if the difference between the original feature count and min_features_to_select isn’t divisible by step.
opts.n_jobs?numberNumber of cores to run in parallel while fitting across folds. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details.
opts.scoring?stringA string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, X, y).
opts.step?numberIf greater than or equal to 1, then step corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage (rounded down) of features to remove at each iteration. Note that the last iteration may remove fewer than step features in order to reach min_features_to_select.
opts.verbose?numberControls verbosity of output.

Returns RFECV

Defined in generated/feature_selection/RFECV.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/feature_selection/RFECV.ts:23
_isInitializedbooleanfalsegenerated/feature_selection/RFECV.ts:22
_pyPythonBridgeundefinedgenerated/feature_selection/RFECV.ts:21
idstringundefinedgenerated/feature_selection/RFECV.ts:18
optsanyundefinedgenerated/feature_selection/RFECV.ts:19

Accessors

cv_results_

Get Signature

get cv_results_(): Promise<any>

All arrays (values of the dictionary) are sorted in ascending order by the number of features used (i.e., the first element of the array represents the models that used the least number of features, while the last element represents the models that used all available features). This dictionary contains the following keys:

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:657


estimator_

Get Signature

get estimator_(): Promise<any>

The fitted estimator used to select features.

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:634


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/feature_selection/RFECV.ts:726


n_features_

Get Signature

get n_features_(): Promise<number>

The number of selected features with cross-validation.

Returns Promise<number>

Defined in generated/feature_selection/RFECV.ts:680


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit. Only defined if the underlying estimator exposes such an attribute when fit.

Returns Promise<number>

Defined in generated/feature_selection/RFECV.ts:703


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/feature_selection/RFECV.ts:82


ranking_

Get Signature

get ranking_(): Promise<any[]>

The feature ranking, such that ranking_\[i\] corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1.

Returns Promise<any[]>

Defined in generated/feature_selection/RFECV.ts:751


support_

Get Signature

get support_(): Promise<ArrayLike>

The mask of selected features.

Returns Promise<ArrayLike>

Defined in generated/feature_selection/RFECV.ts:773

Methods

decision_function()

decision_function(opts): Promise<any>

Compute the decision function of X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?any[]The input samples. Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to a sparse csr_matrix.

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:150


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/feature_selection/RFECV.ts:133


fit()

fit(opts): Promise<any>

Fit the RFE model and automatically tune the number of selected features.

Parameters

ParameterTypeDescription
optsobject-
opts.groups?ArrayLikeGroup labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv instance (e.g., GroupKFold).
opts.X?ArrayLikeTraining vector, where n_samples is the number of samples and n_features is the total number of features.
opts.y?ArrayLikeTarget values (integers for classification, real numbers for regression).

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:182


fit_transform()

fit_transform(opts): Promise<any[]>

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyAdditional fit parameters.
opts.X?ArrayLike[]Input samples.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns Promise<any[]>

Defined in generated/feature_selection/RFECV.ts:226


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Mask feature names according to selected features.

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyInput features.

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:268


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Raise NotImplementedError.

This estimator does not support metadata routing yet.

Parameters

ParameterType
optsobject

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:302


get_support()

get_support(opts): Promise<any>

Get a mask, or integer index, of the features selected.

Parameters

ParameterTypeDescription
optsobject-
opts.indices?booleanIf true, the return value will be an array of integers, rather than a boolean mask.

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:328


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/feature_selection/RFECV.ts:95


inverse_transform()

inverse_transform(opts): Promise<any>

Reverse the transformation operation.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:362


predict()

predict(opts): Promise<any>

Reduce X to the selected features and predict using the estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:394


predict_log_proba()

predict_log_proba(opts): Promise<any[]>

Predict class log-probabilities for X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any[]>

Defined in generated/feature_selection/RFECV.ts:426


predict_proba()

predict_proba(opts): Promise<any[]>

Predict class probabilities for X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?any[]The input samples. Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to a sparse csr_matrix.

Returns Promise<any[]>

Defined in generated/feature_selection/RFECV.ts:458


score()

score(opts): Promise<number>

Reduce X to the selected features and return the score of the estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyParameters to pass to the score method of the underlying estimator.
opts.X?anyThe input samples.
opts.y?anyThe target values.

Returns Promise<number>

Defined in generated/feature_selection/RFECV.ts:490


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.groups?string | booleanMetadata routing for groups parameter in fit.

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:536


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:570


transform()

transform(opts): Promise<any>

Reduce X to the selected features.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any>

Defined in generated/feature_selection/RFECV.ts:602