Class: Birch
Implements the BIRCH clustering algorithm.
It is a memory-efficient, online-learning algorithm provided as an alternative to MiniBatchKMeans
. It constructs a tree data structure with the cluster centroids being read off the leaf. These can be either the final cluster centroids or can be provided as input to another clustering algorithm such as AgglomerativeClustering
.
Read more in the User Guide.
Constructors
new Birch()
new Birch(
opts
?):Birch
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.branching_factor ? | number | Maximum number of CF subclusters in each node. If a new samples enters such that the number of subclusters exceed the branching_factor then that node is split into two nodes with the subclusters redistributed in each. The parent subcluster of that node is removed and two new subclusters are added as parents of the 2 split nodes. |
opts.compute_labels ? | boolean | Whether or not to compute labels for each fit. |
opts.copy ? | boolean | Whether or not to make a copy of the given data. If set to false , the initial data will be overwritten. |
opts.n_clusters ? | number | Number of clusters after the final clustering step, which treats the subclusters from the leaves as new samples. |
opts.threshold ? | number | The radius of the subcluster obtained by merging a new sample and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is started. Setting this value to be very low promotes splitting and vice-versa. |
Returns Birch
Defined in generated/cluster/Birch.ts:25
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/cluster/Birch.ts:23 |
_isInitialized | boolean | false | generated/cluster/Birch.ts:22 |
_py | PythonBridge | undefined | generated/cluster/Birch.ts:21 |
id | string | undefined | generated/cluster/Birch.ts:18 |
opts | any | undefined | generated/cluster/Birch.ts:19 |
Accessors
dummy_leaf_
Get Signature
get dummy_leaf_():
Promise
<any
>
Start pointer to all the leaves.
Returns Promise
<any
>
Defined in generated/cluster/Birch.ts:485
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/cluster/Birch.ts:603
labels_
Get Signature
get labels_():
Promise
<ArrayLike
>
Array of labels assigned to the input data. if partial_fit is used instead of fit, they are assigned to the last batch of data.
Returns Promise
<ArrayLike
>
Defined in generated/cluster/Birch.ts:558
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/cluster/Birch.ts:580
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/cluster/Birch.ts:65
root_
Get Signature
get root_():
Promise
<any
>
Root of the CFTree.
Returns Promise
<any
>
Defined in generated/cluster/Birch.ts:463
subcluster_centers_
Get Signature
get subcluster_centers_():
Promise
<ArrayLike
>
Centroids of all subclusters read directly from the leaves.
Returns Promise
<ArrayLike
>
Defined in generated/cluster/Birch.ts:508
subcluster_labels_
Get Signature
get subcluster_labels_():
Promise
<ArrayLike
>
Labels assigned to the centroids of the subclusters after they are clustered globally.
Returns Promise
<ArrayLike
>
Defined in generated/cluster/Birch.ts:533
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/cluster/Birch.ts:116
fit()
fit(
opts
):Promise
<any
>
Build a CF Tree for the input data.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Input data. |
opts.y ? | any | Not used, present here for API consistency by convention. |
Returns Promise
<any
>
Defined in generated/cluster/Birch.ts:133
fit_predict()
fit_predict(
opts
):Promise
<ArrayLike
>
Perform clustering on X
and returns cluster labels.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.kwargs ? | any | Arguments to be passed to fit . |
opts.X ? | ArrayLike [] | Input data. |
opts.y ? | any | Not used, present for API consistency by convention. |
Returns Promise
<ArrayLike
>
Defined in generated/cluster/Birch.ts:170
fit_transform()
fit_transform(
opts
):Promise
<any
[]>
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit_params
and returns a transformed version of X
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.fit_params ? | any | Additional fit parameters. |
opts.X ? | ArrayLike [] | Input samples. |
opts.y ? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns Promise
<any
[]>
Defined in generated/cluster/Birch.ts:214
get_feature_names_out()
get_feature_names_out(
opts
):Promise
<any
>
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: \["class_name0", "class_name1", "class_name2"\]
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.input_features ? | any | Only used to validate feature names with the names seen in fit . |
Returns Promise
<any
>
Defined in generated/cluster/Birch.ts:258
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/cluster/Birch.ts:292
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/cluster/Birch.ts:78
partial_fit()
partial_fit(
opts
):Promise
<any
>
Online learning. Prevents rebuilding of CFTree from scratch.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Input data. If X is not provided, only the global clustering step is done. |
opts.y ? | any | Not used, present here for API consistency by convention. |
Returns Promise
<any
>
Defined in generated/cluster/Birch.ts:324
predict()
predict(
opts
):Promise
<any
>
Predict data using the centroids_
of subclusters.
Avoid computation of the row norms of X.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Input data. |
Returns Promise
<any
>
Defined in generated/cluster/Birch.ts:363
set_output()
set_output(
opts
):Promise
<any
>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.transform ? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform . |
Returns Promise
<any
>
Defined in generated/cluster/Birch.ts:397
transform()
transform(
opts
):Promise
<ArrayLike
>
Transform X into subcluster centroids dimension.
Each dimension represents the distance from the sample point to each cluster centroid.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Input data. |
Returns Promise
<ArrayLike
>
Defined in generated/cluster/Birch.ts:431