Class: NuSVC
Nu-Support Vector Classification.
Similar to SVC but uses a parameter to control the number of support vectors.
The implementation is based on libsvm.
Read more in the User Guide.
Constructors
new NuSVC()
new NuSVC(
opts
?):NuSVC
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.break_ties ? | boolean | If true, decision_function_shape='ovr' , and number of classes > 2, predict will break ties according to the confidence values of decision_function; otherwise the first class among the tied classes is returned. Please note that breaking ties comes at a relatively high computational cost compared to a simple predict. |
opts.cache_size ? | number | Specify the size of the kernel cache (in MB). |
opts.class_weight ? | any | Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies as n_samples / (n_classes \* np.bincount(y)) . |
opts.coef0 ? | number | Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’. |
opts.decision_function_shape ? | "ovr" | "ovo" | Whether to return a one-vs-rest (‘ovr’) decision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one (‘ovo’) decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). However, one-vs-one (‘ovo’) is always used as multi-class strategy. The parameter is ignored for binary classification. |
opts.degree ? | number | Degree of the polynomial kernel function (‘poly’). Must be non-negative. Ignored by all other kernels. |
opts.gamma ? | number | "auto" | "scale" | Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. |
opts.kernel ? | "sigmoid" | "precomputed" | "linear" | "poly" | "rbf" | Specifies the kernel type to be used in the algorithm. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix. For an intuitive visualization of different kernel types see Plot classification boundaries with different SVM Kernels. |
opts.max_iter ? | number | Hard limit on iterations within solver, or -1 for no limit. |
opts.nu ? | number | An upper bound on the fraction of margin errors (see User Guide) and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. |
opts.probability ? | boolean | Whether to enable probability estimates. This must be enabled prior to calling fit , will slow down that method as it internally uses 5-fold cross-validation, and predict_proba may be inconsistent with predict . Read more in the User Guide. |
opts.random_state ? | number | Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is false . Pass an int for reproducible output across multiple function calls. See Glossary. |
opts.shrinking ? | boolean | Whether to use the shrinking heuristic. See the User Guide. |
opts.tol ? | number | Tolerance for stopping criterion. |
opts.verbose ? | boolean | Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. |
Returns NuSVC
Defined in generated/svm/NuSVC.ts:27
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/svm/NuSVC.ts:25 |
_isInitialized | boolean | false | generated/svm/NuSVC.ts:24 |
_py | PythonBridge | undefined | generated/svm/NuSVC.ts:23 |
id | string | undefined | generated/svm/NuSVC.ts:20 |
opts | any | undefined | generated/svm/NuSVC.ts:21 |
Accessors
class_weight_
Get Signature
get class_weight_():
Promise
<ArrayLike
>
Multipliers of parameter C of each class. Computed based on the class_weight
parameter.
Returns Promise
<ArrayLike
>
Defined in generated/svm/NuSVC.ts:527
classes_
Get Signature
get classes_():
Promise
<ArrayLike
>
The unique classes labels.
Returns Promise
<ArrayLike
>
Defined in generated/svm/NuSVC.ts:550
dual_coef_
Get Signature
get dual_coef_():
Promise
<ArrayLike
[]>
Dual coefficients of the support vector in the decision function (see Mathematical formulation), multiplied by their targets. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the multi-class section of the User Guide for details.
Returns Promise
<ArrayLike
[]>
Defined in generated/svm/NuSVC.ts:572
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/svm/NuSVC.ts:664
fit_status_
Get Signature
get fit_status_():
Promise
<number
>
0 if correctly fitted, 1 if the algorithm did not converge.
Returns Promise
<number
>
Defined in generated/svm/NuSVC.ts:595
intercept_
Get Signature
get intercept_():
Promise
<ArrayLike
>
Constants in decision function.
Returns Promise
<ArrayLike
>
Defined in generated/svm/NuSVC.ts:618
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/svm/NuSVC.ts:641
n_iter_
Get Signature
get n_iter_():
Promise
<ArrayLike
>
Number of iterations run by the optimization routine to fit the model. The shape of this attribute depends on the number of models optimized which in turn depends on the number of classes.
Returns Promise
<ArrayLike
>
Defined in generated/svm/NuSVC.ts:689
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/svm/NuSVC.ts:133
shape_fit_
Get Signature
get shape_fit_():
Promise
<any
[]>
Array dimensions of training vector X
.
Returns Promise
<any
[]>
Defined in generated/svm/NuSVC.ts:758
support_
Get Signature
get support_():
Promise
<ArrayLike
>
Indices of support vectors.
Returns Promise
<ArrayLike
>
Defined in generated/svm/NuSVC.ts:711
support_vectors_
Get Signature
get support_vectors_():
Promise
<ArrayLike
[]>
Support vectors.
Returns Promise
<ArrayLike
[]>
Defined in generated/svm/NuSVC.ts:733
Methods
decision_function()
decision_function(
opts
):Promise
<ArrayLike
[]>
Evaluate the decision function for the samples in X.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | The input samples. |
Returns Promise
<ArrayLike
[]>
Defined in generated/svm/NuSVC.ts:201
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/svm/NuSVC.ts:184
fit()
fit(
opts
):Promise
<any
>
Fit the SVM model according to the given training data.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. |
opts.X ? | ArrayLike | Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel=”precomputed”, the expected shape of X is (n_samples, n_samples). |
opts.y ? | ArrayLike | Target values (class labels in classification, real numbers in regression). |
Returns Promise
<any
>
Defined in generated/svm/NuSVC.ts:233
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/svm/NuSVC.ts:277
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/svm/NuSVC.ts:146
predict()
predict(
opts
):Promise
<ArrayLike
>
Perform classification on samples in X.
For an one-class model, +1 or -1 is returned.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | For kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train). |
Returns Promise
<ArrayLike
>
Defined in generated/svm/NuSVC.ts:311
predict_log_proba()
predict_log_proba(
opts
):Promise
<ArrayLike
[]>
Compute log probabilities of possible outcomes for samples in X.
The model need to have probability information computed at training time: fit with attribute probability
set to true
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | For kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train). |
Returns Promise
<ArrayLike
[]>
Defined in generated/svm/NuSVC.ts:345
predict_proba()
predict_proba(
opts
):Promise
<ArrayLike
[]>
Compute probabilities of possible outcomes for samples in X.
The model needs to have probability information computed at training time: fit with attribute probability
set to true
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | For kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train). |
Returns Promise
<ArrayLike
[]>
Defined in generated/svm/NuSVC.ts:379
score()
score(
opts
):Promise
<number
>
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike [] | Test samples. |
opts.y ? | ArrayLike | True labels for X . |
Returns Promise
<number
>
Defined in generated/svm/NuSVC.ts:413
set_fit_request()
set_fit_request(
opts
):Promise
<any
>
Request metadata passed to the fit
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in fit . |
Returns Promise
<any
>
Defined in generated/svm/NuSVC.ts:459
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/svm/NuSVC.ts:495