Class: TransformedTargetRegressor
Meta-estimator to regress on a transformed target.
Useful for applying a non-linear transformation to the target y
in regression problems. This transformation can be given as a Transformer such as the QuantileTransformer
or as a function and its inverse such as np.log
and np.exp
.
The computation during fit
is:
Constructors
new TransformedTargetRegressor()
new TransformedTargetRegressor(
opts
?):TransformedTargetRegressor
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.check_inverse ? | boolean | Whether to check that transform followed by inverse_transform or func followed by inverse_func leads to the original targets. |
opts.func ? | any | Function to apply to y before passing to fit . Cannot be set at the same time as transformer . If func is None , the function used will be the identity function. If func is set, inverse_func also needs to be provided. The function needs to return a 2-dimensional array. |
opts.inverse_func ? | any | Function to apply to the prediction of the regressor. Cannot be set at the same time as transformer . The inverse function is used to return predictions to the same space of the original training labels. If inverse_func is set, func also needs to be provided. The inverse function needs to return a 2-dimensional array. |
opts.regressor ? | any | Regressor object such as derived from RegressorMixin . This regressor will automatically be cloned each time prior to fitting. If regressor is None , LinearRegression is created and used. |
opts.transformer ? | any | Estimator object such as derived from TransformerMixin . Cannot be set at the same time as func and inverse_func . If transformer is None as well as func and inverse_func , the transformer will be an identity transformer. Note that the transformer will be cloned during fitting. Also, the transformer is restricting y to be a numpy array. |
Returns TransformedTargetRegressor
Defined in generated/compose/TransformedTargetRegressor.ts:25
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/compose/TransformedTargetRegressor.ts:23 |
_isInitialized | boolean | false | generated/compose/TransformedTargetRegressor.ts:22 |
_py | PythonBridge | undefined | generated/compose/TransformedTargetRegressor.ts:21 |
id | string | undefined | generated/compose/TransformedTargetRegressor.ts:18 |
opts | any | undefined | generated/compose/TransformedTargetRegressor.ts:19 |
Accessors
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/compose/TransformedTargetRegressor.ts:393
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/compose/TransformedTargetRegressor.ts:57
regressor_
Get Signature
get regressor_():
Promise
<any
>
Fitted regressor.
Returns Promise
<any
>
Defined in generated/compose/TransformedTargetRegressor.ts:339
transformer_
Get Signature
get transformer_():
Promise
<any
>
Transformer used in fit
and predict
.
Returns Promise
<any
>
Defined in generated/compose/TransformedTargetRegressor.ts:366
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/compose/TransformedTargetRegressor.ts:113
fit()
fit(
opts
):Promise
<any
>
Fit the model according to the given training data.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.fit_params ? | any | Parameters passed to the fit method of the underlying regressor. |
opts.X ? | ArrayLike | Training vector, where n_samples is the number of samples and n_features is the number of features. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<any
>
Defined in generated/compose/TransformedTargetRegressor.ts:130
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Raise NotImplementedError
.
This estimator does not support metadata routing yet.
Parameters
Parameter | Type |
---|---|
opts | object |
Returns Promise
<any
>
Defined in generated/compose/TransformedTargetRegressor.ts:178
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/compose/TransformedTargetRegressor.ts:70
predict()
predict(
opts
):Promise
<ArrayLike
>
Predict using the base regressor, applying inverse.
The regressor is used to predict and the inverse_func
or inverse_transform
is applied before returning the prediction.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.predict_params ? | any | Parameters passed to the predict method of the underlying regressor. |
opts.X ? | ArrayLike | Samples. |
Returns Promise
<ArrayLike
>
Defined in generated/compose/TransformedTargetRegressor.ts:210
score()
score(
opts
):Promise
<number
>
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum()
and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y
, disregarding the input features, would get a \(R^2\) score of 0.0.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike [] | Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted) , where n_samples_fitted is the number of samples used in the fitting for the estimator. |
opts.y ? | ArrayLike | True values for X . |
Returns Promise
<number
>
Defined in generated/compose/TransformedTargetRegressor.ts:253
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/compose/TransformedTargetRegressor.ts:303