FactorAnalysis
Factor Analysis (FA).
A simple linear generative model with Gaussian latent variables.
The observations are assumed to be caused by a linear transformation of lower dimensional latent factors and added Gaussian noise. Without loss of generality the factors are distributed according to a Gaussian with zero mean and unit covariance. The noise is also zero mean and has an arbitrary diagonal covariance matrix.
If we would restrict the model further, by assuming that the Gaussian noise is even isotropic (all diagonal entries are the same) we would obtain PCA
.
FactorAnalysis performs a maximum likelihood estimate of the so-called loading
matrix, the transformation of the latent variables to the observed ones, using SVD based approach.
Read more in the User Guide.
Python Reference (opens in a new tab)
Constructors
constructor()
Signature
new FactorAnalysis(opts?: object): FactorAnalysis;
Parameters
Name | Type | Description |
---|---|---|
opts? | object | - |
opts.copy? | boolean | Whether to make a copy of X. If false , the input X gets overwritten during fitting. Default Value true |
opts.iterated_power? | number | Number of iterations for the power method. 3 by default. Only used if svd\_method equals ‘randomized’. Default Value 3 |
opts.max_iter? | number | Maximum number of iterations. Default Value 1000 |
opts.n_components? | number | Dimensionality of latent space, the number of components of X that are obtained after transform . If undefined , n_components is set to the number of features. |
opts.noise_variance_init? | ArrayLike | The initial guess of the noise variance for each feature. If undefined , it defaults to np.ones(n_features). |
opts.random_state? | number | Only used when svd\_method equals ‘randomized’. Pass an int for reproducible results across multiple function calls. See Glossary. Default Value 0 |
opts.rotation? | "varimax" | "quartimax" | If not undefined , apply the indicated rotation. Currently, varimax and quartimax are implemented. See “The varimax criterion for analytic rotation in factor analysis” (opens in a new tab) H. F. Kaiser, 1958. |
opts.svd_method? | "randomized" | "lapack" | Which SVD method to use. If ‘lapack’ use standard SVD from scipy.linalg, if ‘randomized’ use fast randomized\_svd function. Defaults to ‘randomized’. For most applications ‘randomized’ will be sufficiently precise while providing significant speed gains. Accuracy can also be improved by setting higher values for iterated\_power . If this is not sufficient, for maximum precision you should choose ‘lapack’. Default Value 'randomized' |
opts.tol? | number | Stopping tolerance for log-likelihood increase. Default Value 0.01 |
Returns
Defined in: generated/decomposition/FactorAnalysis.ts:31 (opens in a new tab)
Methods
dispose()
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Signature
dispose(): Promise<void>;
Returns
Promise
<void
>
Defined in: generated/decomposition/FactorAnalysis.ts:160 (opens in a new tab)
fit()
Fit the FactorAnalysis model to X using SVD based approach.
Signature
fit(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | Training data. |
opts.y? | any | Ignored parameter. |
Returns
Promise
<any
>
Defined in: generated/decomposition/FactorAnalysis.ts:177 (opens in a new tab)
fit_transform()
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit\_params
and returns a transformed version of X
.
Signature
fit_transform(opts: object): Promise<any[]>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | Input samples. |
opts.fit_params? | any | Additional fit parameters. |
opts.y? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns
Promise
<any
[]>
Defined in: generated/decomposition/FactorAnalysis.ts:217 (opens in a new tab)
get_covariance()
Compute data covariance with the FactorAnalysis model.
cov \= components\_.T \* components\_ + diag(noise\_variance)
Signature
get_covariance(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.cov? | ArrayLike [] | Estimated covariance of data. |
Returns
Promise
<any
>
Defined in: generated/decomposition/FactorAnalysis.ts:266 (opens in a new tab)
get_feature_names_out()
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: \["class\_name0", "class\_name1", "class\_name2"\]
.
Signature
get_feature_names_out(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.input_features? | any | Only used to validate feature names with the names seen in fit . |
Returns
Promise
<any
>
Defined in: generated/decomposition/FactorAnalysis.ts:301 (opens in a new tab)
get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Signature
get_metadata_routing(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns
Promise
<any
>
Defined in: generated/decomposition/FactorAnalysis.ts:339 (opens in a new tab)
get_precision()
Compute data precision matrix with the FactorAnalysis model.
Signature
get_precision(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.precision? | ArrayLike [] | Estimated precision of data. |
Returns
Promise
<any
>
Defined in: generated/decomposition/FactorAnalysis.ts:374 (opens in a new tab)
init()
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Signature
init(py: PythonBridge): Promise<void>;
Parameters
Name | Type |
---|---|
py | PythonBridge |
Returns
Promise
<void
>
Defined in: generated/decomposition/FactorAnalysis.ts:106 (opens in a new tab)
score()
Compute the average log-likelihood of the samples.
Signature
score(opts: object): Promise<number>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | The data. |
opts.y? | any | Ignored parameter. |
Returns
Promise
<number
>
Defined in: generated/decomposition/FactorAnalysis.ts:408 (opens in a new tab)
score_samples()
Compute the log-likelihood of each sample.
Signature
score_samples(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | The data. |
Returns
Promise
<ArrayLike
>
Defined in: generated/decomposition/FactorAnalysis.ts:446 (opens in a new tab)
set_output()
Set output container.
See Introducing the set_output API for an example on how to use the API.
Signature
set_output(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.transform? | "default" | "pandas" | Configure output of transform and fit\_transform . |
Returns
Promise
<any
>
Defined in: generated/decomposition/FactorAnalysis.ts:481 (opens in a new tab)
transform()
Apply dimensionality reduction to X using the model.
Compute the expected mean of the latent variables. See Barber, 21.2.33 (or Bishop, 12.66).
Signature
transform(opts: object): Promise<ArrayLike[]>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | Training data. |
Returns
Promise
<ArrayLike
[]>
Defined in: generated/decomposition/FactorAnalysis.ts:516 (opens in a new tab)
Properties
_isDisposed
boolean
=false
Defined in: generated/decomposition/FactorAnalysis.ts:29 (opens in a new tab)
_isInitialized
boolean
=false
Defined in: generated/decomposition/FactorAnalysis.ts:28 (opens in a new tab)
_py
PythonBridge
Defined in: generated/decomposition/FactorAnalysis.ts:27 (opens in a new tab)
id
string
Defined in: generated/decomposition/FactorAnalysis.ts:24 (opens in a new tab)
opts
any
Defined in: generated/decomposition/FactorAnalysis.ts:25 (opens in a new tab)
Accessors
components_
Components with maximum variance.
Signature
components_(): Promise<ArrayLike[]>;
Returns
Promise
<ArrayLike
[]>
Defined in: generated/decomposition/FactorAnalysis.ts:549 (opens in a new tab)
feature_names_in_
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Signature
feature_names_in_(): Promise<ArrayLike>;
Returns
Promise
<ArrayLike
>
Defined in: generated/decomposition/FactorAnalysis.ts:697 (opens in a new tab)
loglike_
The log likelihood at each iteration.
Signature
loglike_(): Promise<any[]>;
Returns
Promise
<any
[]>
Defined in: generated/decomposition/FactorAnalysis.ts:574 (opens in a new tab)
mean_
Per-feature empirical mean, estimated from the training set.
Signature
mean_(): Promise<ArrayLike>;
Returns
Promise
<ArrayLike
>
Defined in: generated/decomposition/FactorAnalysis.ts:649 (opens in a new tab)
n_features_in_
Number of features seen during fit.
Signature
n_features_in_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/decomposition/FactorAnalysis.ts:672 (opens in a new tab)
n_iter_
Number of iterations run.
Signature
n_iter_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/decomposition/FactorAnalysis.ts:624 (opens in a new tab)
noise_variance_
The estimated noise variance for each feature.
Signature
noise_variance_(): Promise<ArrayLike>;
Returns
Promise
<ArrayLike
>
Defined in: generated/decomposition/FactorAnalysis.ts:599 (opens in a new tab)
py
Signature
py(): PythonBridge;
Returns
PythonBridge
Defined in: generated/decomposition/FactorAnalysis.ts:93 (opens in a new tab)
Signature
py(pythonBridge: PythonBridge): void;
Parameters
Name | Type |
---|---|
pythonBridge | PythonBridge |
Returns
void
Defined in: generated/decomposition/FactorAnalysis.ts:97 (opens in a new tab)