Class: DotProduct
Dot-Product kernel.
The DotProduct kernel is non-stationary and can be obtained from linear regression by putting \(N(0, 1)\) priors on the coefficients of \(x_d (d = 1, … , D)\) and a prior of \(N(0, \sigma_0^2)\) on the bias. The DotProduct kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter sigma_0 \(\sigma\) which controls the inhomogenity of the kernel. For \(\sigma_0^2 =0\), the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by
Constructors
new DotProduct()
new DotProduct(
opts
?):DotProduct
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.sigma_0 ? | any | Parameter controlling the inhomogenity of the kernel. If sigma_0=0, the kernel is homogeneous. |
opts.sigma_0_bounds ? | "fixed" | The lower and upper bound on ‘sigma_0’. If set to “fixed”, ‘sigma_0’ cannot be changed during hyperparameter tuning. |
Returns DotProduct
Defined in generated/gaussian_process/kernels/DotProduct.ts:23
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/gaussian_process/kernels/DotProduct.ts:21 |
_isInitialized | boolean | false | generated/gaussian_process/kernels/DotProduct.ts:20 |
_py | PythonBridge | undefined | generated/gaussian_process/kernels/DotProduct.ts:19 |
id | string | undefined | generated/gaussian_process/kernels/DotProduct.ts:16 |
opts | any | undefined | generated/gaussian_process/kernels/DotProduct.ts:17 |
Accessors
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/gaussian_process/kernels/DotProduct.ts:40
Methods
__call__()
__call__(
opts
):Promise
<ArrayLike
[]>
Return the kernel k(X, Y) and optionally its gradient.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.eval_gradient ? | boolean | Determines whether the gradient with respect to the log of the kernel hyperparameter is computed. Only supported when Y is undefined . |
opts.X ? | ArrayLike [] | Left argument of the returned kernel k(X, Y) |
opts.Y ? | ArrayLike [] | Right argument of the returned kernel k(X, Y). If undefined , k(X, X) if evaluated instead. |
Returns Promise
<ArrayLike
[]>
Defined in generated/gaussian_process/kernels/DotProduct.ts:109
clone_with_theta()
clone_with_theta(
opts
):Promise
<any
>
Returns a clone of self with given hyperparameters theta.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.theta ? | ArrayLike | The hyperparameters |
Returns Promise
<any
>
Defined in generated/gaussian_process/kernels/DotProduct.ts:153
diag()
diag(
opts
):Promise
<ArrayLike
>
Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | Left argument of the returned kernel k(X, Y). |
Returns Promise
<ArrayLike
>
Defined in generated/gaussian_process/kernels/DotProduct.ts:187
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/gaussian_process/kernels/DotProduct.ts:92
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/gaussian_process/kernels/DotProduct.ts:53
is_stationary()
is_stationary(
opts
):Promise
<any
>
Returns whether the kernel is stationary.
Parameters
Parameter | Type |
---|---|
opts | object |
Returns Promise
<any
>
Defined in generated/gaussian_process/kernels/DotProduct.ts:219