DocumentationClassesClassifierChain

Class: ClassifierChain

A multi-label model that arranges binary classifiers into a chain.

Each model makes a prediction in the order specified by the chain using all of the available features provided to the model plus the predictions of models that are earlier in the chain.

For an example of how to use ClassifierChain and benefit from its ensemble, see ClassifierChain on a yeast dataset example.

Read more in the User Guide.

Python Reference

Constructors

new ClassifierChain()

new ClassifierChain(opts?): ClassifierChain

Parameters

ParameterTypeDescription
opts?object-
opts.base_estimator?anyThe base estimator from which the classifier chain is built.
opts.chain_method?"predict_proba" | "decision_function" | "predict" | "predict_log_proba"Prediction method to be used by estimators in the chain for the ‘prediction’ features of previous estimators in the chain.
opts.cv?numberDetermines whether to use cross validated predictions or true labels for the results of previous estimators in the chain. Possible inputs for cv are:
opts.order?ArrayLike | "random"If undefined, the order will be determined by the order of columns in the label matrix Y.:
opts.random_state?numberIf order='random', determines random number generation for the chain order. In addition, it controls the random seed given at each base_estimator at each chaining iteration. Thus, it is only used when base_estimator exposes a random_state. Pass an int for reproducible output across multiple function calls. See Glossary.
opts.verbose?booleanIf true, chain progress is output as each model is completed.

Returns ClassifierChain

Defined in generated/multioutput/ClassifierChain.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/multioutput/ClassifierChain.ts:25
_isInitializedbooleanfalsegenerated/multioutput/ClassifierChain.ts:24
_pyPythonBridgeundefinedgenerated/multioutput/ClassifierChain.ts:23
idstringundefinedgenerated/multioutput/ClassifierChain.ts:20
optsanyundefinedgenerated/multioutput/ClassifierChain.ts:21

Accessors

chain_method_

Get Signature

get chain_method_(): Promise<string>

Prediction method used by estimators in the chain for the prediction features.

Returns Promise<string>

Defined in generated/multioutput/ClassifierChain.ts:508


classes_

Get Signature

get classes_(): Promise<any[]>

A list of arrays of length len(estimators_) containing the class labels for each estimator in the chain.

Returns Promise<any[]>

Defined in generated/multioutput/ClassifierChain.ts:433


estimators_

Get Signature

get estimators_(): Promise<any[]>

A list of clones of base_estimator.

Returns Promise<any[]>

Defined in generated/multioutput/ClassifierChain.ts:458


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/multioutput/ClassifierChain.ts:558


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit. Only defined if the underlying base_estimator exposes such an attribute when fit.

Returns Promise<number>

Defined in generated/multioutput/ClassifierChain.ts:533


order_

Get Signature

get order_(): Promise<any[]>

The order of labels in the classifier chain.

Returns Promise<any[]>

Defined in generated/multioutput/ClassifierChain.ts:483


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/multioutput/ClassifierChain.ts:70

Methods

decision_function()

decision_function(opts): Promise<ArrayLike[]>

Evaluate the decision_function of the models in the chain.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The input data.

Returns Promise<ArrayLike[]>

Defined in generated/multioutput/ClassifierChain.ts:139


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/multioutput/ClassifierChain.ts:122


fit()

fit(opts): Promise<any>

Fit the model to data matrix X and targets Y.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyParameters passed to the fit method of each step. Only available if enable_metadata_routing=True. See the User Guide.
opts.X?ArrayLikeThe input data.
opts.Y?ArrayLike[]The target values.

Returns Promise<any>

Defined in generated/multioutput/ClassifierChain.ts:173


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRouter encapsulating routing information.

Returns Promise<any>

Defined in generated/multioutput/ClassifierChain.ts:219


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/multioutput/ClassifierChain.ts:83


predict()

predict(opts): Promise<ArrayLike[]>

Predict on the data matrix X using the ClassifierChain model.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeThe input data.

Returns Promise<ArrayLike[]>

Defined in generated/multioutput/ClassifierChain.ts:253


predict_log_proba()

predict_log_proba(opts): Promise<ArrayLike[]>

Predict logarithm of probability estimates.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeThe input data.

Returns Promise<ArrayLike[]>

Defined in generated/multioutput/ClassifierChain.ts:285


predict_proba()

predict_proba(opts): Promise<ArrayLike[]>

Predict probability estimates.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeThe input data.

Returns Promise<ArrayLike[]>

Defined in generated/multioutput/ClassifierChain.ts:319


score()

score(opts): Promise<number>

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples.
opts.y?ArrayLikeTrue labels for X.

Returns Promise<number>

Defined in generated/multioutput/ClassifierChain.ts:353


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/multioutput/ClassifierChain.ts:399