Class: RBFSampler
Approximate a RBF kernel feature map using random Fourier features.
It implements a variant of Random Kitchen Sinks.[1]
Read more in the User Guide.
Constructors
new RBFSampler()
new RBFSampler(
opts
?):RBFSampler
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.gamma ? | number | "scale" | Parameter of RBF kernel: exp(-gamma * x^2). If gamma='scale' is passed then it uses 1 / (n_features * X.var()) as value of gamma. |
opts.n_components ? | number | Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. |
opts.random_state ? | number | Pseudo-random number generator to control the generation of the random weights and random offset when fitting the training data. Pass an int for reproducible output across multiple function calls. See Glossary. |
Returns RBFSampler
Defined in generated/kernel_approximation/RBFSampler.ts:25
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/kernel_approximation/RBFSampler.ts:23 |
_isInitialized | boolean | false | generated/kernel_approximation/RBFSampler.ts:22 |
_py | PythonBridge | undefined | generated/kernel_approximation/RBFSampler.ts:21 |
id | string | undefined | generated/kernel_approximation/RBFSampler.ts:18 |
opts | any | undefined | generated/kernel_approximation/RBFSampler.ts:19 |
Accessors
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/kernel_approximation/RBFSampler.ts:414
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/kernel_approximation/RBFSampler.ts:389
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/kernel_approximation/RBFSampler.ts:49
random_offset_
Get Signature
get random_offset_():
Promise
<ArrayLike
>
Random offset used to compute the projection in the n_components
dimensions of the feature space.
Returns Promise
<ArrayLike
>
Defined in generated/kernel_approximation/RBFSampler.ts:339
random_weights_
Get Signature
get random_weights_():
Promise
<ArrayLike
[]>
Random projection directions drawn from the Fourier transform of the RBF kernel.
Returns Promise
<ArrayLike
[]>
Defined in generated/kernel_approximation/RBFSampler.ts:364
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/kernel_approximation/RBFSampler.ts:101
fit()
fit(
opts
):Promise
<any
>
Fit the model with X.
Samples random projection according to n_features.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | any | Training data, where n_samples is the number of samples and n_features is the number of features. |
opts.y ? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns Promise
<any
>
Defined in generated/kernel_approximation/RBFSampler.ts:120
fit_transform()
fit_transform(
opts
):Promise
<any
[]>
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit_params
and returns a transformed version of X
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.fit_params ? | any | Additional fit parameters. |
opts.X ? | ArrayLike [] | Input samples. |
opts.y ? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns Promise
<any
[]>
Defined in generated/kernel_approximation/RBFSampler.ts:159
get_feature_names_out()
get_feature_names_out(
opts
):Promise
<any
>
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: \["class_name0", "class_name1", "class_name2"\]
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.input_features ? | any | Only used to validate feature names with the names seen in fit . |
Returns Promise
<any
>
Defined in generated/kernel_approximation/RBFSampler.ts:203
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/kernel_approximation/RBFSampler.ts:239
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/kernel_approximation/RBFSampler.ts:62
set_output()
set_output(
opts
):Promise
<any
>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.transform ? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform . |
Returns Promise
<any
>
Defined in generated/kernel_approximation/RBFSampler.ts:275
transform()
transform(
opts
):Promise
<ArrayLike
>
Apply the approximate feature map to X.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | any | New data, where n_samples is the number of samples and n_features is the number of features. |
Returns Promise
<ArrayLike
>