DocumentationClassesConstantKernel

Class: ConstantKernel

Constant kernel.

Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a sum-kernel, where it modifies the mean of the Gaussian process.

Python Reference

Constructors

new ConstantKernel()

new ConstantKernel(opts?): ConstantKernel

Parameters

ParameterTypeDescription
opts?object-
opts.constant_value?numberThe constant value which defines the covariance: k(x_1, x_2) = constant_value
opts.constant_value_bounds?"fixed"The lower and upper bound on constant_value. If set to “fixed”, constant_value cannot be changed during hyperparameter tuning.

Returns ConstantKernel

Defined in generated/gaussian_process/kernels/ConstantKernel.ts:23

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/gaussian_process/kernels/ConstantKernel.ts:21
_isInitializedbooleanfalsegenerated/gaussian_process/kernels/ConstantKernel.ts:20
_pyPythonBridgeundefinedgenerated/gaussian_process/kernels/ConstantKernel.ts:19
idstringundefinedgenerated/gaussian_process/kernels/ConstantKernel.ts:16
optsanyundefinedgenerated/gaussian_process/kernels/ConstantKernel.ts:17

Accessors

py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/gaussian_process/kernels/ConstantKernel.ts:40

Methods

__call__()

__call__(opts): Promise<ArrayLike[]>

Return the kernel k(X, Y) and optionally its gradient.

Parameters

ParameterTypeDescription
optsobject-
opts.eval_gradient?booleanDetermines whether the gradient with respect to the log of the kernel hyperparameter is computed. Only supported when Y is undefined.
opts.X?ArrayLike[]Left argument of the returned kernel k(X, Y)
opts.Y?ArrayLike[]Right argument of the returned kernel k(X, Y). If undefined, k(X, X) is evaluated instead.

Returns Promise<ArrayLike[]>

Defined in generated/gaussian_process/kernels/ConstantKernel.ts:109


clone_with_theta()

clone_with_theta(opts): Promise<any>

Returns a clone of self with given hyperparameters theta.

Parameters

ParameterTypeDescription
optsobject-
opts.theta?ArrayLikeThe hyperparameters

Returns Promise<any>

Defined in generated/gaussian_process/kernels/ConstantKernel.ts:153


diag()

diag(opts): Promise<ArrayLike>

Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Argument to the kernel.

Returns Promise<ArrayLike>

Defined in generated/gaussian_process/kernels/ConstantKernel.ts:189


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/gaussian_process/kernels/ConstantKernel.ts:92


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/gaussian_process/kernels/ConstantKernel.ts:53


is_stationary()

is_stationary(opts): Promise<any>

Returns whether the kernel is stationary.

Parameters

ParameterType
optsobject

Returns Promise<any>

Defined in generated/gaussian_process/kernels/ConstantKernel.ts:221