Class: ConstantKernel
Constant kernel.
Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a sum-kernel, where it modifies the mean of the Gaussian process.
Constructors
new ConstantKernel()
new ConstantKernel(
opts
?):ConstantKernel
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.constant_value ? | number | The constant value which defines the covariance: k(x_1, x_2) = constant_value |
opts.constant_value_bounds ? | "fixed" | The lower and upper bound on constant_value . If set to “fixed”, constant_value cannot be changed during hyperparameter tuning. |
Returns ConstantKernel
Defined in generated/gaussian_process/kernels/ConstantKernel.ts:23
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/gaussian_process/kernels/ConstantKernel.ts:21 |
_isInitialized | boolean | false | generated/gaussian_process/kernels/ConstantKernel.ts:20 |
_py | PythonBridge | undefined | generated/gaussian_process/kernels/ConstantKernel.ts:19 |
id | string | undefined | generated/gaussian_process/kernels/ConstantKernel.ts:16 |
opts | any | undefined | generated/gaussian_process/kernels/ConstantKernel.ts:17 |
Accessors
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/gaussian_process/kernels/ConstantKernel.ts:40
Methods
__call__()
__call__(
opts
):Promise
<ArrayLike
[]>
Return the kernel k(X, Y) and optionally its gradient.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.eval_gradient ? | boolean | Determines whether the gradient with respect to the log of the kernel hyperparameter is computed. Only supported when Y is undefined . |
opts.X ? | ArrayLike [] | Left argument of the returned kernel k(X, Y) |
opts.Y ? | ArrayLike [] | Right argument of the returned kernel k(X, Y). If undefined , k(X, X) is evaluated instead. |
Returns Promise
<ArrayLike
[]>
Defined in generated/gaussian_process/kernels/ConstantKernel.ts:109
clone_with_theta()
clone_with_theta(
opts
):Promise
<any
>
Returns a clone of self with given hyperparameters theta.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.theta ? | ArrayLike | The hyperparameters |
Returns Promise
<any
>
Defined in generated/gaussian_process/kernels/ConstantKernel.ts:153
diag()
diag(
opts
):Promise
<ArrayLike
>
Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | Argument to the kernel. |
Returns Promise
<ArrayLike
>
Defined in generated/gaussian_process/kernels/ConstantKernel.ts:189
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/gaussian_process/kernels/ConstantKernel.ts:92
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/gaussian_process/kernels/ConstantKernel.ts:53
is_stationary()
is_stationary(
opts
):Promise
<any
>
Returns whether the kernel is stationary.
Parameters
Parameter | Type |
---|---|
opts | object |
Returns Promise
<any
>
Defined in generated/gaussian_process/kernels/ConstantKernel.ts:221