DocumentationClassesGraphicalLassoCV

Class: GraphicalLassoCV

Sparse inverse covariance w/ cross-validated choice of the l1 penalty.

See glossary entry for cross-validation estimator.

Read more in the User Guide.

Python Reference

Constructors

new GraphicalLassoCV()

new GraphicalLassoCV(opts?): GraphicalLassoCV

Parameters

ParameterTypeDescription
opts?object-
opts.alphas?number | ArrayLikeIf an integer is given, it fixes the number of points on the grids of alpha to be used. If a list is given, it gives the grid to be used. See the notes in the class docstring for more details. Range is [1, inf) for an integer. Range is (0, inf] for an array-like of floats.
opts.assume_centered?booleanIf true, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If false, data are centered before computation.
opts.cv?numberDetermines the cross-validation splitting strategy. Possible inputs for cv are:
opts.enet_tol?numberThe tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode=’cd’. Range is (0, inf].
opts.eps?numberThe machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Default is np.finfo(np.float64).eps.
opts.max_iter?numberMaximum number of iterations.
opts.mode?"cd" | "lars"The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where number of features is greater than number of samples. Elsewhere prefer cd which is more numerically stable.
opts.n_jobs?numberNumber of jobs to run in parallel. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details.
opts.n_refinements?numberThe number of times the grid is refined. Not used if explicit values of alphas are passed. Range is [1, inf).
opts.tol?numberThe tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. Range is (0, inf].
opts.verbose?booleanIf verbose is true, the objective function and duality gap are printed at each iteration.

Returns GraphicalLassoCV

Defined in generated/covariance/GraphicalLassoCV.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/covariance/GraphicalLassoCV.ts:23
_isInitializedbooleanfalsegenerated/covariance/GraphicalLassoCV.ts:22
_pyPythonBridgeundefinedgenerated/covariance/GraphicalLassoCV.ts:21
idstringundefinedgenerated/covariance/GraphicalLassoCV.ts:18
optsanyundefinedgenerated/covariance/GraphicalLassoCV.ts:19

Accessors

alpha_

Get Signature

get alpha_(): Promise<number>

Penalization parameter selected.

Returns Promise<number>

Defined in generated/covariance/GraphicalLassoCV.ts:568


costs_

Get Signature

get costs_(): Promise<any>

The list of values of the objective function and the dual gap at each iteration. Returned only if return_costs is true.

Returns Promise<any>

Defined in generated/covariance/GraphicalLassoCV.ts:541


covariance_

Get Signature

get covariance_(): Promise<ArrayLike[]>

Estimated covariance matrix.

Returns Promise<ArrayLike[]>

Defined in generated/covariance/GraphicalLassoCV.ts:487


cv_results_

Get Signature

get cv_results_(): Promise<any>

A dict with keys:

Returns Promise<any>

Defined in generated/covariance/GraphicalLassoCV.ts:595


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/covariance/GraphicalLassoCV.ts:676


location_

Get Signature

get location_(): Promise<ArrayLike>

Estimated location, i.e. the estimated mean.

Returns Promise<ArrayLike>

Defined in generated/covariance/GraphicalLassoCV.ts:460


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/covariance/GraphicalLassoCV.ts:649


n_iter_

Get Signature

get n_iter_(): Promise<number>

Number of iterations run for the optimal alpha.

Returns Promise<number>

Defined in generated/covariance/GraphicalLassoCV.ts:622


precision_

Get Signature

get precision_(): Promise<ArrayLike[]>

Estimated precision matrix (inverse covariance).

Returns Promise<ArrayLike[]>

Defined in generated/covariance/GraphicalLassoCV.ts:514


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/covariance/GraphicalLassoCV.ts:101

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/covariance/GraphicalLassoCV.ts:155


error_norm()

error_norm(opts): Promise<number>

Compute the Mean Squared Error between two covariance estimators.

Parameters

ParameterTypeDescription
optsobject-
opts.comp_cov?ArrayLike[]The covariance to compare with.
opts.norm?"frobenius" | "spectral"The type of norm used to compute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov \- self.covariance_).
opts.scaling?booleanIf true (default), the squared error norm is divided by n_features. If false, the squared error norm is not rescaled.
opts.squared?booleanWhether to compute the squared error norm or the error norm. If true (default), the squared error norm is returned. If false, the error norm is returned.

Returns Promise<number>

Defined in generated/covariance/GraphicalLassoCV.ts:172


fit()

fit(opts): Promise<any>

Fit the GraphicalLasso covariance model to X.

Parameters

ParameterTypeDescription
optsobject-
opts.params?anyParameters to be passed to the CV splitter and the cross_val_score function.
opts.X?ArrayLike[]Data from which to compute the covariance estimate.
opts.y?anyNot used, present for API consistency by convention.

Returns Promise<any>

Defined in generated/covariance/GraphicalLassoCV.ts:227


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRouter encapsulating routing information.

Returns Promise<any>

Defined in generated/covariance/GraphicalLassoCV.ts:273


get_precision()

get_precision(opts): Promise<any>

Getter for the precision matrix.

Parameters

ParameterTypeDescription
optsobject-
opts.precision_?ArrayLike[]The precision matrix associated to the current covariance object.

Returns Promise<any>

Defined in generated/covariance/GraphicalLassoCV.ts:309


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/covariance/GraphicalLassoCV.ts:114


mahalanobis()

mahalanobis(opts): Promise<ArrayLike>

Compute the squared Mahalanobis distances of given observations.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit.

Returns Promise<ArrayLike>

Defined in generated/covariance/GraphicalLassoCV.ts:345


score()

score(opts): Promise<number>

Compute the log-likelihood of X_test under the estimated Gaussian model.

The Gaussian model is defined by its mean and covariance matrix which are represented respectively by self.location_ and self.covariance_.

Parameters

ParameterTypeDescription
optsobject-
opts.X_test?ArrayLike[]Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering).
opts.y?anyNot used, present for API consistency by convention.

Returns Promise<number>

Defined in generated/covariance/GraphicalLassoCV.ts:381


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.X_test?string | booleanMetadata routing for X_test parameter in score.

Returns Promise<any>

Defined in generated/covariance/GraphicalLassoCV.ts:424