DocumentationClassesQuantileRegressor

Class: QuantileRegressor

Linear regression model that predicts conditional quantiles.

The linear QuantileRegressor optimizes the pinball loss for a desired quantile and is robust to outliers.

This model uses an L1 regularization like Lasso.

Read more in the User Guide.

Python Reference

Constructors

new QuantileRegressor()

new QuantileRegressor(opts?): QuantileRegressor

Parameters

ParameterTypeDescription
opts?object-
opts.alpha?numberRegularization constant that multiplies the L1 penalty term.
opts.fit_intercept?booleanWhether or not to fit the intercept.
opts.quantile?numberThe quantile that the model tries to predict. It must be strictly between 0 and 1. If 0.5 (default), the model predicts the 50% quantile, i.e. the median.
opts.solver?"highs-ds" | "highs-ipm" | "highs" | "interior-point" | "revised simplex"Method used by scipy.optimize.linprog to solve the linear programming formulation. From scipy>=1.6.0, it is recommended to use the highs methods because they are the fastest ones. Solvers “highs-ds”, “highs-ipm” and “highs” support sparse input data and, in fact, always convert to sparse csc. From scipy>=1.11.0, “interior-point” is not available anymore.
opts.solver_options?anyAdditional parameters passed to scipy.optimize.linprog as options. If undefined and if solver='interior-point', then {"lstsq": true} is passed to scipy.optimize.linprog for the sake of stability.

Returns QuantileRegressor

Defined in generated/linear_model/QuantileRegressor.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/linear_model/QuantileRegressor.ts:25
_isInitializedbooleanfalsegenerated/linear_model/QuantileRegressor.ts:24
_pyPythonBridgeundefinedgenerated/linear_model/QuantileRegressor.ts:23
idstringundefinedgenerated/linear_model/QuantileRegressor.ts:20
optsanyundefinedgenerated/linear_model/QuantileRegressor.ts:21

Accessors

coef_

Get Signature

get coef_(): Promise<any[]>

Estimated coefficients for the features.

Returns Promise<any[]>

Defined in generated/linear_model/QuantileRegressor.ts:387


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/linear_model/QuantileRegressor.ts:468


intercept_

Get Signature

get intercept_(): Promise<number>

The intercept of the model, aka bias term.

Returns Promise<number>

Defined in generated/linear_model/QuantileRegressor.ts:414


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/linear_model/QuantileRegressor.ts:441


n_iter_

Get Signature

get n_iter_(): Promise<number>

The actual number of iterations performed by the solver.

Returns Promise<number>

Defined in generated/linear_model/QuantileRegressor.ts:495


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/linear_model/QuantileRegressor.ts:74

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/linear_model/QuantileRegressor.ts:128


fit()

fit(opts): Promise<any>

Fit the model according to the given training data.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLikeTraining data.
opts.y?ArrayLikeTarget values.

Returns Promise<any>

Defined in generated/linear_model/QuantileRegressor.ts:145


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/linear_model/QuantileRegressor.ts:191


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/linear_model/QuantileRegressor.ts:87


predict()

predict(opts): Promise<any>

Predict using the linear model.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anySamples.

Returns Promise<any>

Defined in generated/linear_model/QuantileRegressor.ts:227


score()

score(opts): Promise<number>

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum() and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
opts.y?ArrayLikeTrue values for X.

Returns Promise<number>

Defined in generated/linear_model/QuantileRegressor.ts:263


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/linear_model/QuantileRegressor.ts:311


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/linear_model/QuantileRegressor.ts:351