DocumentationClassesRidgeClassifierCV

Class: RidgeClassifierCV

Ridge classifier with built-in cross-validation.

See glossary entry for cross-validation estimator.

By default, it performs Leave-One-Out Cross-Validation. Currently, only the n_features > n_samples case is handled efficiently.

Read more in the User Guide.

Python Reference

Constructors

new RidgeClassifierCV()

new RidgeClassifierCV(opts?): RidgeClassifierCV

Parameters

ParameterTypeDescription
opts?object-
opts.alphas?ArrayLikeArray of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to 1 / (2C) in other linear models such as LogisticRegression or LinearSVC. If using Leave-One-Out cross-validation, alphas must be strictly positive.
opts.class_weight?anyWeights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one. The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes \* np.bincount(y)).
opts.cv?numberDetermines the cross-validation splitting strategy. Possible inputs for cv are:
opts.fit_intercept?booleanWhether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
opts.scoring?stringA string (see The scoring parameter: defining model evaluation rules) or a scorer callable object / function with signature scorer(estimator, X, y).
opts.store_cv_results?booleanFlag indicating if the cross-validation results corresponding to each alpha should be stored in the cv_results_ attribute (see below). This flag is only compatible with cv=None (i.e. using Leave-One-Out Cross-Validation).
opts.store_cv_values?booleanFlag indicating if the cross-validation values corresponding to each alpha should be stored in the cv_values_ attribute (see below). This flag is only compatible with cv=None (i.e. using Leave-One-Out Cross-Validation).

Returns RidgeClassifierCV

Defined in generated/linear_model/RidgeClassifierCV.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/linear_model/RidgeClassifierCV.ts:25
_isInitializedbooleanfalsegenerated/linear_model/RidgeClassifierCV.ts:24
_pyPythonBridgeundefinedgenerated/linear_model/RidgeClassifierCV.ts:23
idstringundefinedgenerated/linear_model/RidgeClassifierCV.ts:20
optsanyundefinedgenerated/linear_model/RidgeClassifierCV.ts:21

Accessors

alpha_

Get Signature

get alpha_(): Promise<number>

Estimated regularization parameter.

Returns Promise<number>

Defined in generated/linear_model/RidgeClassifierCV.ts:512


best_score_

Get Signature

get best_score_(): Promise<number>

Score of base estimator with best alpha.

Returns Promise<number>

Defined in generated/linear_model/RidgeClassifierCV.ts:539


coef_

Get Signature

get coef_(): Promise<ArrayLike[]>

Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary.

Returns Promise<ArrayLike[]>

Defined in generated/linear_model/RidgeClassifierCV.ts:458


cv_results_

Get Signature

get cv_results_(): Promise<ArrayLike[][]>

Cross-validation results for each alpha (only if store_cv_results=True and cv=None). After fit() has been called, this attribute will contain the mean squared errors if scoring is None otherwise it will contain standardized per point prediction values.

Returns Promise<ArrayLike[][]>

Defined in generated/linear_model/RidgeClassifierCV.ts:429


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/linear_model/RidgeClassifierCV.ts:593


intercept_

Get Signature

get intercept_(): Promise<number | ArrayLike>

Independent term in decision function. Set to 0.0 if fit_intercept \= False.

Returns Promise<number | ArrayLike>

Defined in generated/linear_model/RidgeClassifierCV.ts:485


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/linear_model/RidgeClassifierCV.ts:566


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/linear_model/RidgeClassifierCV.ts:73

Methods

decision_function()

decision_function(opts): Promise<ArrayLike>

Predict confidence scores for samples.

The confidence score for a sample is proportional to the signed distance of that sample to the hyperplane.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeThe data matrix for which we want to get the confidence scores.

Returns Promise<ArrayLike>

Defined in generated/linear_model/RidgeClassifierCV.ts:146


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/linear_model/RidgeClassifierCV.ts:127


fit()

fit(opts): Promise<any>

Fit Ridge classifier with cv.

Parameters

ParameterTypeDescription
optsobject-
opts.params?anyParameters to be passed to the underlying scorer.
opts.sample_weight?number | ArrayLikeIndividual weights for each sample. If given a float, every sample will have the same weight.
opts.X?ArrayLike[]Training vectors, where n_samples is the number of samples and n_features is the number of features. When using GCV, will be cast to float64 if necessary.
opts.y?ArrayLikeTarget values. Will be cast to X’s dtype if necessary.

Returns Promise<any>

Defined in generated/linear_model/RidgeClassifierCV.ts:182


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRouter encapsulating routing information.

Returns Promise<any>

Defined in generated/linear_model/RidgeClassifierCV.ts:233


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/linear_model/RidgeClassifierCV.ts:86


predict()

predict(opts): Promise<ArrayLike>

Predict class labels for samples in X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The data matrix for which we want to predict the targets.

Returns Promise<ArrayLike>

Defined in generated/linear_model/RidgeClassifierCV.ts:269


score()

score(opts): Promise<number>

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples.
opts.y?ArrayLikeTrue labels for X.

Returns Promise<number>

Defined in generated/linear_model/RidgeClassifierCV.ts:305


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/linear_model/RidgeClassifierCV.ts:353


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/linear_model/RidgeClassifierCV.ts:393