Class: KernelRidge
Kernel ridge regression.
Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space.
The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which learns a sparse model for epsilon > 0, at prediction-time.
This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]).
Read more in the User Guide.
Constructors
new KernelRidge()
new KernelRidge(
opts
?):KernelRidge
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.alpha ? | number | ArrayLike | Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to 1 / (2C) in other linear models such as LogisticRegression or LinearSVC . If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. See Ridge regression and classification for formula. |
opts.coef0 ? | number | Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. |
opts.degree ? | number | Degree of the polynomial kernel. Ignored by other kernels. |
opts.gamma ? | number | Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. |
opts.kernel ? | string | Kernel mapping used internally. This parameter is directly passed to pairwise_kernels . If kernel is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS or “precomputed”. If kernel is “precomputed”, X is assumed to be a kernel matrix. Alternatively, if kernel is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two rows from X as input and return the corresponding kernel value as a single number. This means that callables from sklearn.metrics.pairwise are not allowed, as they operate on matrices, not single samples. Use the string identifying the kernel instead. |
opts.kernel_params ? | any | Additional parameters (keyword arguments) for kernel function passed as callable object. |
Returns KernelRidge
Defined in generated/kernel_ridge/KernelRidge.ts:29
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/kernel_ridge/KernelRidge.ts:27 |
_isInitialized | boolean | false | generated/kernel_ridge/KernelRidge.ts:26 |
_py | PythonBridge | undefined | generated/kernel_ridge/KernelRidge.ts:25 |
id | string | undefined | generated/kernel_ridge/KernelRidge.ts:22 |
opts | any | undefined | generated/kernel_ridge/KernelRidge.ts:23 |
Accessors
dual_coef_
Get Signature
get dual_coef_():
Promise
<ArrayLike
>
Representation of weight vector(s) in kernel space
Returns Promise
<ArrayLike
>
Defined in generated/kernel_ridge/KernelRidge.ts:367
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/kernel_ridge/KernelRidge.ts:440
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/kernel_ridge/KernelRidge.ts:415
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/kernel_ridge/KernelRidge.ts:72
X_fit_
Get Signature
get X_fit_():
Promise
<ArrayLike
>
Training data, which is also required for prediction. If kernel == “precomputed” this is instead the precomputed training matrix, of shape (n_samples, n_samples).
Returns Promise
<ArrayLike
>
Defined in generated/kernel_ridge/KernelRidge.ts:392
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/kernel_ridge/KernelRidge.ts:124
fit()
fit(
opts
):Promise
<any
>
Fit Kernel Ridge regression model.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | number | ArrayLike | Individual weights for each sample, ignored if undefined is passed. |
opts.X ? | ArrayLike | Training data. If kernel == “precomputed” this is instead a precomputed kernel matrix, of shape (n_samples, n_samples). |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<any
>
Defined in generated/kernel_ridge/KernelRidge.ts:141
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/kernel_ridge/KernelRidge.ts:185
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/kernel_ridge/KernelRidge.ts:85
predict()
predict(
opts
):Promise
<ArrayLike
>
Predict using the kernel ridge model.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike | Samples. If kernel == “precomputed” this is instead a precomputed kernel matrix, shape = [n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for this estimator. |
Returns Promise
<ArrayLike
>
Defined in generated/kernel_ridge/KernelRidge.ts:219
score()
score(
opts
):Promise
<number
>
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum()
and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y
, disregarding the input features, would get a \(R^2\) score of 0.0.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike [] | Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted) , where n_samples_fitted is the number of samples used in the fitting for the estimator. |
opts.y ? | ArrayLike | True values for X . |
Returns Promise
<number
>
Defined in generated/kernel_ridge/KernelRidge.ts:253
set_fit_request()
set_fit_request(
opts
):Promise
<any
>
Request metadata passed to the fit
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in fit . |
Returns Promise
<any
>
Defined in generated/kernel_ridge/KernelRidge.ts:299
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/kernel_ridge/KernelRidge.ts:335