Class: ElasticNet

Linear regression with combined L1 and L2 priors as regularizer.

Minimizes the objective function:

Python Reference

Constructors

new ElasticNet()

new ElasticNet(opts?): ElasticNet

Parameters

ParameterTypeDescription
opts?object-
opts.alpha?numberConstant that multiplies the penalty terms. Defaults to 1.0. See the notes for the exact mathematical meaning of this parameter. alpha \= 0 is equivalent to an ordinary least square, solved by the LinearRegression object. For numerical reasons, using alpha \= 0 with the Lasso object is not advised. Given this, you should use the LinearRegression object.
opts.copy_X?booleanIf true, X will be copied; else, it may be overwritten.
opts.fit_intercept?booleanWhether the intercept should be estimated or not. If false, the data is assumed to be already centered.
opts.l1_ratio?numberThe ElasticNet mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio \= 0 the penalty is an L2 penalty. For l1_ratio \= 1 it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
opts.max_iter?numberThe maximum number of iterations.
opts.positive?booleanWhen set to true, forces the coefficients to be positive.
opts.precompute?boolean | ArrayLike[]Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as argument. For sparse input this option is always false to preserve sparsity. Check an example on how to use a precomputed Gram Matrix in ElasticNet for details.
opts.random_state?numberThe seed of the pseudo random number generator that selects a random feature to update. Used when selection == ‘random’. Pass an int for reproducible output across multiple function calls. See Glossary.
opts.selection?"random" | "cyclic"If set to ‘random’, a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to ‘random’) often leads to significantly faster convergence especially when tol is higher than 1e-4.
opts.tol?numberThe tolerance for the optimization: if the updates are smaller than tol, the optimization code checks the dual gap for optimality and continues until it is smaller than tol, see Notes below.
opts.warm_start?booleanWhen set to true, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See the Glossary.

Returns ElasticNet

Defined in generated/linear_model/ElasticNet.ts:23

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/linear_model/ElasticNet.ts:21
_isInitializedbooleanfalsegenerated/linear_model/ElasticNet.ts:20
_pyPythonBridgeundefinedgenerated/linear_model/ElasticNet.ts:19
idstringundefinedgenerated/linear_model/ElasticNet.ts:16
optsanyundefinedgenerated/linear_model/ElasticNet.ts:17

Accessors

coef_

Get Signature

get coef_(): Promise<ArrayLike>

Parameter vector (w in the cost function formula).

Returns Promise<ArrayLike>

Defined in generated/linear_model/ElasticNet.ts:535


dual_gap_

Get Signature

get dual_gap_(): Promise<number | ArrayLike>

Given param alpha, the dual gaps at the end of the optimization, same shape as each observation of y.

Returns Promise<number | ArrayLike>

Defined in generated/linear_model/ElasticNet.ts:604


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/linear_model/ElasticNet.ts:652


intercept_

Get Signature

get intercept_(): Promise<number | ArrayLike>

Independent term in decision function.

Returns Promise<number | ArrayLike>

Defined in generated/linear_model/ElasticNet.ts:558


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/linear_model/ElasticNet.ts:627


n_iter_

Get Signature

get n_iter_(): Promise<any>

Number of iterations run by the coordinate descent solver to reach the specified tolerance.

Returns Promise<any>

Defined in generated/linear_model/ElasticNet.ts:581


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/linear_model/ElasticNet.ts:103

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/linear_model/ElasticNet.ts:155


fit()

fit(opts): Promise<any>

Fit model with coordinate descent.

Parameters

ParameterTypeDescription
optsobject-
opts.check_input?booleanAllow to bypass several input checking. Don’t use this parameter unless you know what you do.
opts.sample_weight?number | ArrayLikeSample weights. Internally, the sample_weight vector will be rescaled to sum to n_samples.
opts.X?anyData. Note that large sparse matrices and arrays requiring int64 indices are not accepted.
opts.y?ArrayLikeTarget. Will be cast to X’s dtype if necessary.

Returns Promise<any>

Defined in generated/linear_model/ElasticNet.ts:172


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/linear_model/ElasticNet.ts:225


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/linear_model/ElasticNet.ts:116


path()

path(opts): Promise<ArrayLike>

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

Parameters

ParameterTypeDescription
optsobject-
opts.alphas?ArrayLikeList of alphas where to compute the models. If undefined alphas are set automatically.
opts.check_input?booleanIf set to false, the input validation checks are skipped (including the Gram matrix when provided). It is assumed that they are handled by the caller.
opts.coef_init?ArrayLikeThe initial values of the coefficients.
opts.copy_X?booleanIf true, X will be copied; else, it may be overwritten.
opts.eps?numberLength of the path. eps=1e-3 means that alpha_min / alpha_max \= 1e-3.
opts.l1_ratio?numberNumber between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso.
opts.n_alphas?numberNumber of alphas along the regularization path.
opts.params?anyKeyword arguments passed to the coordinate descent solver.
opts.positive?booleanIf set to true, forces coefficients to be positive. (Only allowed when y.ndim \== 1).
opts.precompute?boolean | ArrayLike[] | "auto"Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument.
opts.return_n_iter?booleanWhether to return the number of iterations or not.
opts.verbose?number | booleanAmount of verbosity.
opts.X?ArrayLikeTraining data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output then X can be sparse.
opts.Xy?ArrayLikeXy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.
opts.y?anyTarget values.

Returns Promise<ArrayLike>

Defined in generated/linear_model/ElasticNet.ts:263


predict()

predict(opts): Promise<any>

Predict using the linear model.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anySamples.

Returns Promise<any>

Defined in generated/linear_model/ElasticNet.ts:383


score()

score(opts): Promise<number>

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum() and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
opts.y?ArrayLikeTrue values for X.

Returns Promise<number>

Defined in generated/linear_model/ElasticNet.ts:416


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.check_input?string | booleanMetadata routing for check_input parameter in fit.
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/linear_model/ElasticNet.ts:462


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/linear_model/ElasticNet.ts:503