Class: GenericUnivariateSelect
Univariate feature selector with configurable strategy.
Read more in the User Guide.
Constructors
new GenericUnivariateSelect()
new GenericUnivariateSelect(
opts?):GenericUnivariateSelect
Parameters
| Parameter | Type | Description |
|---|---|---|
opts? | object | - |
opts.mode? | "percentile" | "k_best" | "fpr" | "fdr" | "fwe" | Feature selection mode. Note that the 'percentile' and 'kbest' modes are supporting unsupervised feature selection (when y is undefined). |
opts.param? | number | "all" | Parameter of the corresponding mode. |
opts.score_func? | any | Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues). For modes ‘percentile’ or ‘kbest’ it can return a single array scores. |
Returns GenericUnivariateSelect
Defined in generated/feature_selection/GenericUnivariateSelect.ts:23
Properties
| Property | Type | Default value | Defined in |
|---|---|---|---|
_isDisposed | boolean | false | generated/feature_selection/GenericUnivariateSelect.ts:21 |
_isInitialized | boolean | false | generated/feature_selection/GenericUnivariateSelect.ts:20 |
_py | PythonBridge | undefined | generated/feature_selection/GenericUnivariateSelect.ts:19 |
id | string | undefined | generated/feature_selection/GenericUnivariateSelect.ts:16 |
opts | any | undefined | generated/feature_selection/GenericUnivariateSelect.ts:17 |
Accessors
feature_names_in_
Get Signature
get feature_names_in_():
Promise<ArrayLike>
Names of features seen during fit. Defined only when X has feature names that are all strings.
Returns Promise<ArrayLike>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:510
n_features_in_
Get Signature
get n_features_in_():
Promise<number>
Number of features seen during fit.
Returns Promise<number>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:483
pvalues_
Get Signature
get pvalues_():
Promise<ArrayLike>
p-values of feature scores, undefined if score_func returned scores only.
Returns Promise<ArrayLike>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:456
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge):void
Parameters
| Parameter | Type |
|---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/feature_selection/GenericUnivariateSelect.ts:47
scores_
Get Signature
get scores_():
Promise<ArrayLike>
Scores of features.
Returns Promise<ArrayLike>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:429
Methods
dispose()
dispose():
Promise<void>
Disposes of the underlying Python resources.
Once dispose() is called, the instance is no longer usable.
Returns Promise<void>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:103
fit()
fit(
opts):Promise<any>
Run score function on (X, y) and get the appropriate features.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | ArrayLike[] | The training input samples. |
opts.y? | ArrayLike | The target values (class labels in classification, real numbers in regression). If the selector is unsupervised then y can be set to undefined. |
Returns Promise<any>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:120
fit_transform()
fit_transform(
opts):Promise<any[]>
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.fit_params? | any | Additional fit parameters. |
opts.X? | ArrayLike[] | Input samples. |
opts.y? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns Promise<any[]>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:161
get_feature_names_out()
get_feature_names_out(
opts):Promise<any>
Mask feature names according to selected features.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.input_features? | any | Input features. |
Returns Promise<any>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:207
get_metadata_routing()
get_metadata_routing(
opts):Promise<any>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns Promise<any>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:245
get_support()
get_support(
opts):Promise<any>
Get a mask, or integer index, of the features selected.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.indices? | boolean | If true, the return value will be an array of integers, rather than a boolean mask. |
Returns Promise<any>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:281
init()
init(
py):Promise<void>
Initializes the underlying Python resources.
This instance is not usable until the Promise returned by init() resolves.
Parameters
| Parameter | Type |
|---|---|
py | PythonBridge |
Returns Promise<void>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:60
inverse_transform()
inverse_transform(
opts):Promise<any>
Reverse the transformation operation.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | any | The input samples. |
Returns Promise<any>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:319
set_output()
set_output(
opts):Promise<any>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.transform? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform. |
Returns Promise<any>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:357
transform()
transform(
opts):Promise<any>
Reduce X to the selected features.
Parameters
| Parameter | Type | Description |
|---|---|---|
opts | object | - |
opts.X? | any | The input samples. |
Returns Promise<any>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:393