Class: GenericUnivariateSelect
Univariate feature selector with configurable strategy.
Read more in the User Guide.
Constructors
new GenericUnivariateSelect()
new GenericUnivariateSelect(
opts
?):GenericUnivariateSelect
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.mode ? | "percentile" | "k_best" | "fpr" | "fdr" | "fwe" | Feature selection mode. Note that the 'percentile' and 'kbest' modes are supporting unsupervised feature selection (when y is undefined ). |
opts.param ? | number | "all" | Parameter of the corresponding mode. |
opts.score_func ? | any | Function taking two arrays X and y, and returning a pair of arrays (scores, pvalues). For modes ‘percentile’ or ‘kbest’ it can return a single array scores. |
Returns GenericUnivariateSelect
Defined in generated/feature_selection/GenericUnivariateSelect.ts:23
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/feature_selection/GenericUnivariateSelect.ts:21 |
_isInitialized | boolean | false | generated/feature_selection/GenericUnivariateSelect.ts:20 |
_py | PythonBridge | undefined | generated/feature_selection/GenericUnivariateSelect.ts:19 |
id | string | undefined | generated/feature_selection/GenericUnivariateSelect.ts:16 |
opts | any | undefined | generated/feature_selection/GenericUnivariateSelect.ts:17 |
Accessors
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:510
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:483
pvalues_
Get Signature
get pvalues_():
Promise
<ArrayLike
>
p-values of feature scores, undefined
if score_func
returned scores only.
Returns Promise
<ArrayLike
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:456
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/feature_selection/GenericUnivariateSelect.ts:47
scores_
Get Signature
get scores_():
Promise
<ArrayLike
>
Scores of features.
Returns Promise
<ArrayLike
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:429
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:103
fit()
fit(
opts
):Promise
<any
>
Run score function on (X, y) and get the appropriate features.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | The training input samples. |
opts.y ? | ArrayLike | The target values (class labels in classification, real numbers in regression). If the selector is unsupervised then y can be set to undefined . |
Returns Promise
<any
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:120
fit_transform()
fit_transform(
opts
):Promise
<any
[]>
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit_params
and returns a transformed version of X
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.fit_params ? | any | Additional fit parameters. |
opts.X ? | ArrayLike [] | Input samples. |
opts.y ? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns Promise
<any
[]>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:161
get_feature_names_out()
get_feature_names_out(
opts
):Promise
<any
>
Mask feature names according to selected features.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.input_features ? | any | Input features. |
Returns Promise
<any
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:207
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:245
get_support()
get_support(
opts
):Promise
<any
>
Get a mask, or integer index, of the features selected.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.indices ? | boolean | If true , the return value will be an array of integers, rather than a boolean mask. |
Returns Promise
<any
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:281
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:60
inverse_transform()
inverse_transform(
opts
):Promise
<any
>
Reverse the transformation operation.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | any | The input samples. |
Returns Promise
<any
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:319
set_output()
set_output(
opts
):Promise
<any
>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.transform ? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform . |
Returns Promise
<any
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:357
transform()
transform(
opts
):Promise
<any
>
Reduce X to the selected features.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | any | The input samples. |
Returns Promise
<any
>
Defined in generated/feature_selection/GenericUnivariateSelect.ts:393