Class: RocCurveDisplay
ROC Curve visualization.
It is recommend to use from_estimator
or from_predictions
to create a RocCurveDisplay
. All parameters are stored as attributes.
Read more in the User Guide.
Constructors
new RocCurveDisplay()
new RocCurveDisplay(
opts
?):RocCurveDisplay
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.estimator_name ? | string | Name of estimator. If undefined , the estimator name is not shown. |
opts.fpr ? | ArrayLike | False positive rate. |
opts.pos_label ? | string | number | boolean | The class considered as the positive class when computing the roc auc metrics. By default, estimators.classes_\[1\] is considered as the positive class. |
opts.roc_auc ? | number | Area under ROC curve. If undefined , the roc_auc score is not shown. |
opts.tpr ? | ArrayLike | True positive rate. |
Returns RocCurveDisplay
Defined in generated/metrics/RocCurveDisplay.ts:25
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/metrics/RocCurveDisplay.ts:23 |
_isInitialized | boolean | false | generated/metrics/RocCurveDisplay.ts:22 |
_py | PythonBridge | undefined | generated/metrics/RocCurveDisplay.ts:21 |
id | string | undefined | generated/metrics/RocCurveDisplay.ts:18 |
opts | any | undefined | generated/metrics/RocCurveDisplay.ts:19 |
Accessors
ax_
Get Signature
get ax_():
Promise
<any
>
Axes with ROC Curve.
Returns Promise
<any
>
Defined in generated/metrics/RocCurveDisplay.ts:406
chance_level_
Get Signature
get chance_level_():
Promise
<any
>
The chance level line. It is undefined
if the chance level is not plotted.
Returns Promise
<any
>
Defined in generated/metrics/RocCurveDisplay.ts:381
figure_
Get Signature
get figure_():
Promise
<any
>
Figure containing the curve.
Returns Promise
<any
>
Defined in generated/metrics/RocCurveDisplay.ts:429
line_
Get Signature
get line_():
Promise
<any
>
ROC Curve.
Returns Promise
<any
>
Defined in generated/metrics/RocCurveDisplay.ts:358
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/metrics/RocCurveDisplay.ts:55
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/metrics/RocCurveDisplay.ts:107
from_estimator()
from_estimator(
opts
):Promise
<any
>
Create a ROC Curve display from an estimator.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.ax ? | any | Axes object to plot on. If undefined , a new figure and axes is created. |
opts.chance_level_kw ? | any | Keyword arguments to be passed to matplotlibās plot for rendering the chance level line. |
opts.drop_intermediate ? | boolean | Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves. |
opts.estimator ? | any | Fitted classifier or a fitted Pipeline in which the last estimator is a classifier. |
opts.kwargs ? | any | Keyword arguments to be passed to matplotlibās plot . |
opts.name ? | string | Name of ROC Curve for labeling. If undefined , use the name of the estimator. |
opts.plot_chance_level ? | boolean | Whether to plot the chance level. |
opts.pos_label ? | string | number | boolean | The class considered as the positive class when computing the roc auc metrics. By default, estimators.classes_\[1\] is considered as the positive class. |
opts.response_method ? | "decision_function" | "autoā} default=āauto" | Specifies whether to use predict_proba or decision_function as the target response. If set to āautoā, predict_proba is tried first and if it does not exist decision_function is tried next. |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike | Input values. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<any
>
Defined in generated/metrics/RocCurveDisplay.ts:124
from_predictions()
from_predictions(
opts
):Promise
<any
>
Plot ROC curve given the true and predicted values.
Read more in the User Guide.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.ax ? | any | Axes object to plot on. If undefined , a new figure and axes is created. |
opts.chance_level_kw ? | any | Keyword arguments to be passed to matplotlibās plot for rendering the chance level line. |
opts.drop_intermediate ? | boolean | Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. This is useful in order to create lighter ROC curves. |
opts.kwargs ? | any | Additional keywords arguments passed to matplotlib plot function. |
opts.name ? | string | Name of ROC curve for labeling. If undefined , name will be set to "Classifier" . |
opts.plot_chance_level ? | boolean | Whether to plot the chance level. |
opts.pos_label ? | string | number | boolean | The label of the positive class. When pos_label=None , if y_true is in {-1, 1} or {0, 1}, pos_label is set to 1, otherwise an error will be raised. |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.y_pred ? | ArrayLike | Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by ādecision_functionā on some classifiers). |
opts.y_true ? | ArrayLike | True labels. |
Returns Promise
<any
>
Defined in generated/metrics/RocCurveDisplay.ts:219
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/metrics/RocCurveDisplay.ts:68
plot()
plot(
opts
):Promise
<any
>
Plot visualization.
Extra keyword arguments will be passed to matplotlibās plot
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.ax ? | any | Axes object to plot on. If undefined , a new figure and axes is created. |
opts.chance_level_kw ? | any | Keyword arguments to be passed to matplotlibās plot for rendering the chance level line. |
opts.kwargs ? | any | Keyword arguments to be passed to matplotlibās plot . |
opts.name ? | string | Name of ROC Curve for labeling. If undefined , use estimator_name if not undefined , otherwise no labeling is shown. |
opts.plot_chance_level ? | boolean | Whether to plot the chance level. |
Returns Promise
<any
>
Defined in generated/metrics/RocCurveDisplay.ts:304