Class: EllipticEnvelope
An object for detecting outliers in a Gaussian distributed dataset.
Read more in the User Guide.
Constructors
new EllipticEnvelope()
new EllipticEnvelope(
opts
?):EllipticEnvelope
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.assume_centered ? | boolean | If true , the support of robust location and covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If false , the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment. |
opts.contamination ? | number | The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Range is (0, 0.5]. |
opts.random_state ? | number | Determines the pseudo random number generator for shuffling the data. Pass an int for reproducible results across multiple function calls. See Glossary. |
opts.store_precision ? | boolean | Specify if the estimated precision is stored. |
opts.support_fraction ? | number | The proportion of points to be included in the support of the raw MCD estimate. If undefined , the minimum value of support_fraction will be used within the algorithm: (n_samples + n_features + 1) / 2 \* n_samples . Range is (0, 1). |
Returns EllipticEnvelope
Defined in generated/covariance/EllipticEnvelope.ts:23
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/covariance/EllipticEnvelope.ts:21 |
_isInitialized | boolean | false | generated/covariance/EllipticEnvelope.ts:20 |
_py | PythonBridge | undefined | generated/covariance/EllipticEnvelope.ts:19 |
id | string | undefined | generated/covariance/EllipticEnvelope.ts:16 |
opts | any | undefined | generated/covariance/EllipticEnvelope.ts:17 |
Accessors
covariance_
Get Signature
get covariance_():
Promise
<ArrayLike
[]>
Estimated robust covariance matrix.
Returns Promise
<ArrayLike
[]>
Defined in generated/covariance/EllipticEnvelope.ts:673
dist_
Get Signature
get dist_():
Promise
<ArrayLike
>
Mahalanobis distances of the training set (on which fit
is called) observations.
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:862
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:916
location_
Get Signature
get location_():
Promise
<ArrayLike
>
Estimated robust location.
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:646
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/covariance/EllipticEnvelope.ts:889
offset_
Get Signature
get offset_():
Promise
<number
>
Offset used to define the decision function from the raw scores. We have the relation: decision_function \= score_samples \- offset_
. The offset depends on the contamination parameter and is defined in such a way we obtain the expected number of outliers (samples with decision function < 0) in training.
Returns Promise
<number
>
Defined in generated/covariance/EllipticEnvelope.ts:754
precision_
Get Signature
get precision_():
Promise
<ArrayLike
[]>
Estimated pseudo inverse matrix. (stored only if store_precision is true
)
Returns Promise
<ArrayLike
[]>
Defined in generated/covariance/EllipticEnvelope.ts:700
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/covariance/EllipticEnvelope.ts:59
raw_covariance_
Get Signature
get raw_covariance_():
Promise
<ArrayLike
[]>
The raw robust estimated covariance before correction and re-weighting.
Returns Promise
<ArrayLike
[]>
Defined in generated/covariance/EllipticEnvelope.ts:808
raw_location_
Get Signature
get raw_location_():
Promise
<ArrayLike
>
The raw robust estimated location before correction and re-weighting.
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:781
raw_support_
Get Signature
get raw_support_():
Promise
<ArrayLike
>
A mask of the observations that have been used to compute the raw robust estimates of location and shape, before correction and re-weighting.
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:835
support_
Get Signature
get support_():
Promise
<ArrayLike
>
A mask of the observations that have been used to compute the robust estimates of location and shape.
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:727
Methods
correct_covariance()
correct_covariance(
opts
):Promise
<ArrayLike
[]>
Apply a correction to raw Minimum Covariance Determinant estimates.
Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [RVD].
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.data ? | ArrayLike [] | The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. |
Returns Promise
<ArrayLike
[]>
Defined in generated/covariance/EllipticEnvelope.ts:132
decision_function()
decision_function(
opts
):Promise
<ArrayLike
>
Compute the decision function of the given observations.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | The data matrix. |
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:168
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/covariance/EllipticEnvelope.ts:113
error_norm()
error_norm(
opts
):Promise
<number
>
Compute the Mean Squared Error between two covariance estimators.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.comp_cov ? | ArrayLike [] | The covariance to compare with. |
opts.norm ? | "frobenius" | "spectral" | The type of norm used to compute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spectral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov \- self.covariance_) . |
opts.scaling ? | boolean | If true (default), the squared error norm is divided by n_features. If false , the squared error norm is not rescaled. |
opts.squared ? | boolean | Whether to compute the squared error norm or the error norm. If true (default), the squared error norm is returned. If false , the error norm is returned. |
Returns Promise
<number
>
Defined in generated/covariance/EllipticEnvelope.ts:204
fit()
fit(
opts
):Promise
<any
>
Fit the EllipticEnvelope model.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | Training data. |
opts.y ? | any | Not used, present for API consistency by convention. |
Returns Promise
<any
>
Defined in generated/covariance/EllipticEnvelope.ts:259
fit_predict()
fit_predict(
opts
):Promise
<ArrayLike
>
Perform fit on X and returns labels for X.
Returns -1 for outliers and 1 for inliers.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.kwargs ? | any | Arguments to be passed to fit . |
opts.X ? | ArrayLike | The input samples. |
opts.y ? | any | Not used, present for API consistency by convention. |
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:300
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/covariance/EllipticEnvelope.ts:346
get_precision()
get_precision(
opts
):Promise
<any
>
Getter for the precision matrix.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.precision_ ? | ArrayLike [] | The precision matrix associated to the current covariance object. |
Returns Promise
<any
>
Defined in generated/covariance/EllipticEnvelope.ts:382
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/covariance/EllipticEnvelope.ts:72
mahalanobis()
mahalanobis(
opts
):Promise
<ArrayLike
>
Compute the squared Mahalanobis distances of given observations.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit. |
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:418
predict()
predict(
opts
):Promise
<ArrayLike
>
Predict labels (1 inlier, -1 outlier) of X according to fitted model.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | The data matrix. |
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:452
reweight_covariance()
reweight_covariance(
opts
):Promise
<ArrayLike
>
Re-weight raw Minimum Covariance Determinant estimates.
Re-weight observations using Rousseeuw’s method (equivalent to deleting outlying observations from the data set before computing location and covariance estimates) described in [RVDriessen].
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.data ? | ArrayLike [] | The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. |
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:488
score()
score(
opts
):Promise
<number
>
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike [] | Test samples. |
opts.y ? | ArrayLike | True labels for X. |
Returns Promise
<number
>
Defined in generated/covariance/EllipticEnvelope.ts:526
score_samples()
score_samples(
opts
):Promise
<ArrayLike
>
Compute the negative Mahalanobis distances.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | The data matrix. |
Returns Promise
<ArrayLike
>
Defined in generated/covariance/EllipticEnvelope.ts:570
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/covariance/EllipticEnvelope.ts:610