DocumentationClassesStackingClassifier

Class: StackingClassifier

Stack of estimators with a final classifier.

Stacked generalization consists in stacking the output of individual estimator and use a classifier to compute the final prediction. Stacking allows to use the strength of each individual estimator by using their output as input of a final estimator.

Note that estimators_ are fitted on the full X while final_estimator_ is trained using cross-validated predictions of the base estimators using cross_val_predict.

Read more in the User Guide.

Python Reference

Constructors

new StackingClassifier()

new StackingClassifier(opts?): StackingClassifier

Parameters

ParameterTypeDescription
opts?object-
opts.cv?number | "prefit"Determines the cross-validation splitting strategy used in cross_val_predict to train final_estimator. Possible inputs for cv are:
opts.estimators?anyBase estimators which will be stacked together. Each element of the list is defined as a tuple of string (i.e. name) and an estimator instance. An estimator can be set to ‘drop’ using set_params. The type of estimator is generally expected to be a classifier. However, one can pass a regressor for some use case (e.g. ordinal regression).
opts.final_estimator?anyA classifier which will be used to combine the base estimators. The default classifier is a LogisticRegression.
opts.n_jobs?numberThe number of jobs to run in parallel all estimators fit. undefined means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.
opts.passthrough?booleanWhen false, only the predictions of estimators will be used as training data for final_estimator. When true, the final_estimator is trained on the predictions as well as the original training data.
opts.stack_method?"auto" | "predict_proba" | "decision_function" | "predict"Methods called for each base estimator. It can be:
opts.verbose?numberVerbosity level.

Returns StackingClassifier

Defined in generated/ensemble/StackingClassifier.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/ensemble/StackingClassifier.ts:25
_isInitializedbooleanfalsegenerated/ensemble/StackingClassifier.ts:24
_pyPythonBridgeundefinedgenerated/ensemble/StackingClassifier.ts:23
idstringundefinedgenerated/ensemble/StackingClassifier.ts:20
optsanyundefinedgenerated/ensemble/StackingClassifier.ts:21

Accessors

classes_

Get Signature

get classes_(): Promise<ArrayLike>

Class labels.

Returns Promise<ArrayLike>

Defined in generated/ensemble/StackingClassifier.ts:615


estimators_

Get Signature

get estimators_(): Promise<any>

The elements of the estimators parameter, having been fitted on the training data. If an estimator has been set to 'drop', it will not appear in estimators_. When cv="prefit", estimators_ is set to estimators and is not fitted again.

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:642


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Only defined if the underlying estimators expose such an attribute when fit.

Returns Promise<ArrayLike>

Defined in generated/ensemble/StackingClassifier.ts:696


final_estimator_

Get Signature

get final_estimator_(): Promise<any>

The classifier which predicts given the output of estimators_.

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:723


named_estimators_

Get Signature

get named_estimators_(): Promise<any>

Attribute to access any fitted sub-estimators by name.

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:669


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/ensemble/StackingClassifier.ts:75


stack_method_

Get Signature

get stack_method_(): Promise<any>

The method used by each base estimator.

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:750

Methods

decision_function()

decision_function(opts): Promise<ArrayLike>

Decision function for samples in X using the final estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<ArrayLike>

Defined in generated/ensemble/StackingClassifier.ts:148


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/ensemble/StackingClassifier.ts:131


fit()

fit(opts): Promise<any>

Fit the estimators.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights. If undefined, then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights.
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.
opts.y?ArrayLikeTarget values. Note that y will be internally encoded in numerically increasing order or lexicographic order. If the order matter (e.g. for ordinal regression), one should numerically encode the target y before calling fit.

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:184


fit_transform()

fit_transform(opts): Promise<any[]>

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyAdditional fit parameters.
opts.X?ArrayLike[]Input samples.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns Promise<any[]>

Defined in generated/ensemble/StackingClassifier.ts:230


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Get output feature names for transformation.

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyInput features. The input feature names are only used when passthrough is true.

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:276


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Raise NotImplementedError.

This estimator does not support metadata routing yet.

Parameters

ParameterType
optsobject

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:314


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/ensemble/StackingClassifier.ts:88


predict()

predict(opts): Promise<ArrayLike>

Predict target for X.

Parameters

ParameterTypeDescription
optsobject-
opts.predict_params?anyParameters to the predict called by the final_estimator. Note that this may be used to return uncertainties from some estimators with return_std or return_cov. Be aware that it will only accounts for uncertainty in the final estimator.
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<ArrayLike>

Defined in generated/ensemble/StackingClassifier.ts:344


predict_proba()

predict_proba(opts): Promise<any[] | ArrayLike[]>

Predict class probabilities for X using the final estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<any[] | ArrayLike[]>

Defined in generated/ensemble/StackingClassifier.ts:383


score()

score(opts): Promise<number>

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples.
opts.y?ArrayLikeTrue labels for X.

Returns Promise<number>

Defined in generated/ensemble/StackingClassifier.ts:421


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:469


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:507


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/ensemble/StackingClassifier.ts:545


transform()

transform(opts): Promise<ArrayLike[]>

Return class labels or probabilities for X for each estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features.

Returns Promise<ArrayLike[]>

Defined in generated/ensemble/StackingClassifier.ts:581