RobustScaler
Scale features using statistics that are robust to outliers.
This Scaler removes the median and scales the data according to the quantile range (defaults to IQR: Interquartile Range). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).
Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the transform
method.
Standardization of a dataset is a common preprocessing for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, using the median and the interquartile range often give better results. For an example visualization and comparison to other scalers, refer to Compare RobustScaler with other scalers.
Python Reference (opens in a new tab)
Constructors
constructor()
Signature
new RobustScaler(opts?: object): RobustScaler;
Parameters
Name | Type | Description |
---|---|---|
opts? | object | - |
opts.copy? | boolean | If false , try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Default Value true |
opts.quantile_range? | any | Quantile range used to calculate scale\_ . By default this is equal to the IQR, i.e., q\_min is the first quantile and q\_max is the third quantile. |
opts.unit_variance? | boolean | If true , scale data so that normally distributed features have a variance of 1. In general, if the difference between the x-values of q\_max and q\_min for a standard normal distribution is greater than 1, the dataset will be scaled down. If less than 1, the dataset will be scaled up. Default Value false |
opts.with_centering? | boolean | If true , center the data before scaling. This will cause transform to raise an exception when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. Default Value true |
opts.with_scaling? | boolean | If true , scale the data to interquartile range. Default Value true |
Returns
Defined in: generated/preprocessing/RobustScaler.ts:27 (opens in a new tab)
Methods
dispose()
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Signature
dispose(): Promise<void>;
Returns
Promise
<void
>
Defined in: generated/preprocessing/RobustScaler.ts:122 (opens in a new tab)
fit()
Compute the median and quantiles to be used for scaling.
Signature
fit(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike | The data used to compute the median and quantiles used for later scaling along the features axis. |
opts.y? | any | Not used, present here for API consistency by convention. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/RobustScaler.ts:139 (opens in a new tab)
fit_transform()
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit\_params
and returns a transformed version of X
.
Signature
fit_transform(opts: object): Promise<any[]>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | Input samples. |
opts.fit_params? | any | Additional fit parameters. |
opts.y? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns
Promise
<any
[]>
Defined in: generated/preprocessing/RobustScaler.ts:179 (opens in a new tab)
get_feature_names_out()
Get output feature names for transformation.
Signature
get_feature_names_out(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.input_features? | any | Input features. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/RobustScaler.ts:226 (opens in a new tab)
get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Signature
get_metadata_routing(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/RobustScaler.ts:264 (opens in a new tab)
init()
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Signature
init(py: PythonBridge): Promise<void>;
Parameters
Name | Type |
---|---|
py | PythonBridge |
Returns
Promise
<void
>
Defined in: generated/preprocessing/RobustScaler.ts:78 (opens in a new tab)
inverse_transform()
Scale back the data to the original representation.
Signature
inverse_transform(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike | The rescaled data to be transformed back. |
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/RobustScaler.ts:299 (opens in a new tab)
set_output()
Set output container.
See Introducing the set_output API for an example on how to use the API.
Signature
set_output(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.transform? | "default" | "pandas" | Configure output of transform and fit\_transform . |
Returns
Promise
<any
>
Defined in: generated/preprocessing/RobustScaler.ts:336 (opens in a new tab)
transform()
Center and scale the data.
Signature
transform(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike | The data used to scale along the specified axis. |
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/RobustScaler.ts:369 (opens in a new tab)
Properties
_isDisposed
boolean
=false
Defined in: generated/preprocessing/RobustScaler.ts:25 (opens in a new tab)
_isInitialized
boolean
=false
Defined in: generated/preprocessing/RobustScaler.ts:24 (opens in a new tab)
_py
PythonBridge
Defined in: generated/preprocessing/RobustScaler.ts:23 (opens in a new tab)
id
string
Defined in: generated/preprocessing/RobustScaler.ts:20 (opens in a new tab)
opts
any
Defined in: generated/preprocessing/RobustScaler.ts:21 (opens in a new tab)
Accessors
center_
The median value for each feature in the training set.
Signature
center_(): Promise<any>;
Returns
Promise
<any
>
Defined in: generated/preprocessing/RobustScaler.ts:402 (opens in a new tab)
feature_names_in_
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Signature
feature_names_in_(): Promise<ArrayLike>;
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/RobustScaler.ts:473 (opens in a new tab)
n_features_in_
Number of features seen during fit.
Signature
n_features_in_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/preprocessing/RobustScaler.ts:448 (opens in a new tab)
py
Signature
py(): PythonBridge;
Returns
PythonBridge
Defined in: generated/preprocessing/RobustScaler.ts:65 (opens in a new tab)
Signature
py(pythonBridge: PythonBridge): void;
Parameters
Name | Type |
---|---|
pythonBridge | PythonBridge |
Returns
void
Defined in: generated/preprocessing/RobustScaler.ts:69 (opens in a new tab)
scale_
The (scaled) interquartile range for each feature in the training set.
Signature
scale_(): Promise<any>;
Returns
Promise
<any
>
Defined in: generated/preprocessing/RobustScaler.ts:425 (opens in a new tab)